2 resultados para insulin receptor substrate proteins

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excess plasma free fatty acids (FFA) are correlated with insulin resistance and are a risk factor for the development of type 2 diabetes. In this study we examined the effect of the polyphenol resveratrol on FF A-induced insulin resistance in skeletal muscle cells and the mechanisms involved. Incubation of L6 myotubes with the FF A palmitate significantly decreased the insulin-stimulated glucqse uptake. Importantly, the effect of palmitate was ameliorated by resveratrol. Palmitate significantly increased serine phosphorylation of IRS..; 1 and reduced insulin-stimulated Akt phosphorylation, an effect that was abolished by resveratrol. We then investigated the effect of palmitate and resveratrol on the expression and phosphorylation of JNK, mTOR, p70-S6K, and AMPK kinases. The results demonstrated that our treatments had no effect on the expression of these proteins. However, palmitate increased the phosphorylation of mTOR and p70- S6K, whereas resveratrol abolished this effect and increased the phosphorylation of AMPK. Furthermore, all effects of resveratrol were abolished with sirtuin inhibitors, sirtinol and nicotinamide. These results indicate that resveratrol ameliorated FF A-induced insulin resistance by regulating mTOR and p70-S6K phosphorylation in skeletal muscle cells, through a mechanism involving sirtuins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic Acquired Resistance (SAR) is a type of plant systemic resistance occurring against a broad spectrum of pathogens. It can be activated in response to pathogen infection in the model plant Arabidopsis thaliana and many agriculturally important crops. Upon SAR activation, the infected plant undergoes transcriptional reprogramming, marked by the induction of a battery of defense genes, including Pathogenesis-related (PR) genes. Activation of the PR-1 gene serves as a molecular marker for the deployment of SAR. The accumulation of a defense hormone, salicylic acid (SA) is crucial for the infected plant to mount SAR. Increased cellular levels of SA lead to the downstream activation of the PR-1 gene, triggered by the combined action of the Non-expressor of Pathogenesis-related Gene 1 (NPR1) protein and the TGA II-clade transcription factor (namely TGA2). Despite the importance of SA, its receptor has remained elusive for decades. In this study, we demonstrated that in Arabidopsis the NPR1 protein is a receptor for SA. SA physically binds to the C-terminal transactivation domain of NPR1. The two cysteines (Cys521 and Cys529), which are important for NPR1’s coactivator function, within this transactivation domain are critical for the binding of SA to NPR1. The interaction between SA and NPR1 requires a transition metal, copper, as a cofactor. Our results also suggested a conformational change in NPR1 upon SA binding, releasing the C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ domain. These results advance our understanding of the plant immune function, specifically related to the molecular mechanisms underlying SAR. The discovery of NPR1 as a SA receptor enables future chemical screening for small molecules that activate plant immune responses through their interaction with NPR1 or NPR1-like proteins in commercially important plants. This will help in identifying the next generation of non-biocidal pesticides.