10 resultados para insect vectors
em Brock University, Canada
Resumo:
Conidia of the insect pathogenic fungus, Metarhizium anisopliae play an important role in pathogenicity because they are the infective propagules that adhere to the surface of the insect, then germinate and give rise to hyphal penetration of the insect cuticle. Conidia are produced in the final stages of insect infection as the mycelia emerge from the insect cadaver. The genes associated with conidiation have not yet been studied in this fiingus. hi this study we used the PCR-based technique, suppression subtractive hybridization (SSH) to selectively amplify conidial-associated genes in M. anisopliae. We then identified the presence of these differentially expressed genes using the National Center for Biotechnology Information database. One of the transcripts encoded an extracellular subtilisin-like protease, Prl, which plays a fundamental role in cuticular protein degradation. Analysis of the patterns of gene expression of the transcripts using RT-PCR indicated that conidial-associated cDNAs are expressed during the development of the mature conidium. RT-PCR analysis was also performed to examine in vivo expression of Prl during infection of waxworm larvae {Galleria mellonelld). Results showed expression of Prl as mycelia emerge and produce conidia on the surface of the cadaver. It is well documented that Prl is produced during the initial stages of transcuticular penetration by M. anisopliae. We suggest that upregulation of Prl is part of the mechanism by which reverse (from inside to the outside of the host) transcuticular penetration of the insect cuticle allows subsequent conidiation on the cadaver.
Resumo:
Gamma-aminobutyric acid (GAB A) is a ubiquitous non-protein amino acid synthesized via the decarboxylation of L-glutamate in a reaction catalyzed by the cytosolic enzyme L-glutamate decarboxylase (GAD). In animals it functions as an inhibitory neurotransmitter. In plants it accumulates rapidly in response to various stresses, but its function remains unclear. The hypothesis that GABA accumulation in leaf tissue may function as a plant resistance mechanism against phytophagous insect activity was investigated. GABA accumulation in response to mechanical stimulation, mechanical damage and insect activity was demonstrated. In wt tobacco (Nicotiana tabacum cv Samsun), mechanical stimulation or damage caused GABA to accumulate within 2 min from mean levels of 14 to 37 and 1~9 nmol g-l fresh weight (FW), respectively. In the transgenic tobacco strain CaMVGAD27c overexpressing Petunia GAD, the same treatments caused GABA to accumulate from 12 to 59 and 279 nmol g-l FW, respectively. In the transgenic tobacco strain CaMVGADilC 11 overexpressing Petunia GAD lacking an autoinhibitory domain, mechanical stimulation or damage caused GABA to accumulate from 180 to 309 and 630 nmol g-l FW, respectively. Ambulatory activity by tobacco budworm (TBW) larvae (Heliothis virescens) on leaves of CaMVGAD27c tobacco caused GABA to accumulate from 28 to 80 nmol g-l FW within 5 min. Ambulatory and leaf-rolling activity by oblique banded leaf roller (OBLR) larvae (Choristoneura rosaceana cv Harris) on wt soybean leaves (Glycine max cv Harovinton) caused GABA to accumulate from 60 to 1123 nmol g-l FW within 20 min. Increased GABA levels in leaf tissue were shown to affect phytophagous preference in TBW larvae presented with wt and transgenic tobacco leaves. When presented with leaves of Samsun wt and CaMVGAD27c plants, TBW larvae consumed more wt leaf tissue (640 ± 501 S.D. mm2 ) than transgenic leaf tissue (278 ± 338 S.D. mm2 ) nine times out of ten. When presented with leaves of Samsun wt and CaMVGAD~C11 plants, TBW larvae consumed more transgenic leaf tissue (1219 ± 1009 S.D. mm2 ) than wt leaf tissue (28 ± 31 S.D. mm2 ) ten times out of ten. These results indicate that: (1) ambulatory activity of insect larvae on leaves results in increased GABA levels, (2) transgenic tobacco leaves with increased capacity for GABA synthesis deter feeding, and (3) transgenic tobacco leaves with constitutively higher GABA levels stimulate feeding.
Resumo:
The monoconjugates of phenolic acids (i.e. coumaric acid) with polyamines such as spermidine and spermine are strikingly similar to some toxins from spiders and predatory wasps. Many plants contain phenolic acid polyamine conjugates and there is some reliable information supporting their roles as plant defense chemicals. Eleven monoacylated compounds of diamines, triamines, tetraamines and oxa-polyamine amines were prepared in three to seven steps: 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32. The synthesis proceeds through stepwise construction of the polyamine backbone (as in 62 and 72), followed by protection and deprotection steps of the amino functions. Desymmetrization of readily available and prepared symmetrical polyamines is a key step in the synthesis. The protecting groups employed were tert-butoxycarbonyl (BOC) and trifluoroacetyl (TFA) group which were removed under different conditions: acid and base respectively. Deprotection and refunctionalization of the polyamine reagent demonstrated the versatility of these systems for N-acylation.
Resumo:
Strain improvement of the insect pathogenic fungus Metarhizium anisopUae is necessary to increase its virulence towards agricultural pests and thus improve its commercial efficacy. Nevertheless, the release of genetically modified conidia in crop fields may negatively affect the ecosystem. Controlling conidiation is a potential means of limiting the release of engineered strains since conidia are the infective propagules and the means of dispersal. The purpose of this study was to research the colony development of M. anisopUae to identify potential targets for genetic manipulation to control conidiation. Following Agrobacterium tumefaciem insertional mutagenesis, phenotypic mutants were characterized using Y-shaped adaptor dependent extension PCR. Four of 1 8 colony development recombinants had T-DNA flanking sequences with high homology to genes encoding known signaling pathway proteins that regulate pathogenesis and/or asexual development in filamentous fungi. Conidial density counts and insect bioassays suggested that a Serine/Threonine protein kinase COTl homolog is not essential for conidiation or virulence. Furthermore, a choline kinase homolog is important for conidiation, but not virulence. Finally, the regulator of G protein signaling CAG8 and a NADPH oxidase NoxA homolog are necessary for conidiation and virulence. These genes are candidates for further investigation into the regulatory pathways controlling conidiation to yield insight into promising gene targets for biocontrol strain improvement.
Resumo:
The construction of adenovirus vectors for cloning and foreign gene expression requires packaging cell lines that can complement missing viral functions caused by sequence deletions and/or replacement with foreign DNA sequences. In this study, packaging cell lines were designed to provide in trans the missing bovine adenovirus functions, so that recombinant viruses could be generated. Fetal bovine kidney and lUng cells, acquired at the trimester term from a pregnant cow, were tranfected with both digested wild type BAV2 genomic DNA and pCMV-EI. The plasmid pCMV-EI was specifically constructed to express El of BAV2 under the control of the cytomegalovirus enhancer/promoter (CMV). Selection for "true" transformants by continuous passaging showed no success in isolating immortalised cells, since the cells underwent crisis resulting in complete cell death. Moreover, selection for G418 resistance, using the same cells, also did not result in the isolation of an immortalised cell line and the same culture-collapse event was observed. The lack of success in establishing an immortalised cell line from fetal tissue prompted us to transfect a pre-established cell line. We began by transfecting MDBK (Mardin-Dardy bovine kidney) cells with pCMV-El-neo, which contain the bacterial selectable marker neo gene. A series of MDBK-derived cell lines, that constitutively express bovine adenoviral (BAV) early region 1 (El), were then isolated. Cells selected for resistance to the drug G418 were isolated collectively for full characterisation to assess their suitability as packaging cell lines. Individual colonies were isolated by limiting dilution and further tested for El expression and efficiency of DNA uptake. Two cell lines, L-23 and L-24, out of 48 generated foci tested positive for £1 expression using Northern Blot analysis. DNA uptake studies, using both lipofectamine and calcium phosphate methods, were performed to compare these cells, their parental MDBK cells, 8 and the unrelated human 293 cells as a benchmark. The results revealed that the new MDBKderived clones were no more efficient than MDBK cells in the transient expression of transfected DNA and that they were inferior to 293 cells, when using lacZ as the reporter gene. In view of the inherently poor transfection efficiency of MDBK cells and their derivatives, a number of other bovine cells were investigated for their potential as packaging cells. The cell line CCL40 was chosen for its high efficiency in DNA uptake and subsequently transfected with the plasmid vector pCMV El-neo. By selection with the drug G418, two cell lines were isolated, ProCell 1 and ProCell 2. These cell lines were tested for El expression, permissivity to BAV2 and DNA uptake efficiency, revealing a DNA uptake efficiency of 37 % , comparable to that of CCL40. Attempts to rescue BAV2 mutants carrying the lacZ gene in place of £1 or £3 were carried out by co-transfecting wild type viral DNA with either the plasmid pdlElE-Z (which contains BAV2 sequences from 0% to 40.4% with the lacZ gene in place of the £1 region from 1.1% to 8.25%) or with the plasmid pdlE3-5-Z (which contains BAV2 sequences from 64.8% to 100% with the lacZ gene in place of the E3 region from 75.8% to 81.4%). These cotransfections did not result in the generation of a viral mutant. The lack of mutant generation was thought to be caused by the relative inefficiency ofDNA uptake. Consequently, cosBAV2, a cosmid vector carrying the BAV2 genome, was modified to carry the neo reporter gene in place of the £3 region from 75.8% to 81.4%. The use of a single cosmid vector earring the whole genome would eliminate the need for homologous recombination in order to generate a viral vector. Unfortunately, the transfection of cosBAV2- neo also did not result in the generation of a viral mutant. This may have been caused by the size of the £3 deletion, where excess sequences that are essential to the virus' survival might have been deleted. As an extension to this study, the spontaneous E3 deletion, accidently discovered in our viral stock, could be used as site of foreign gene insertion.
Resumo:
The interfilament spacing of the anterior byssus retractor muscle from Mytilus edulis was studied as the muscle was extended. It was found that variations in this spacing were very small and consistent with the hypothesis that the interfilament spacing was independent of the extension of the muscle. It was observed that the interfilament spacing was dependent on the osmolarity of the bathing medium. In concentrated solutions of the artificial seawater, the interfilament spacing decreased; while in dilute solutions of artificial seawater, it was observed that the interfilament spacing was increasing. X-ray diffraction patterns were obtained from fresh, and glutaraldehyde fixed, specimens of insect flight muscle from Sarcophaga bullata. There patterns were in general agreement with previous X-ray diffraction studies of insect flight muscle. A reflexion G at 93A was observed and interpreted as arising from diffraction in the mitochondria. Specimens of dried insect flight muscle produced a diffraction pattern consisting of arc and ring reflexions. This was interpreted as suggesting an ordered arrangement of cristae, in the mitochondria from these muscles.
Resumo:
The resurgence of malaria in highland regions of Africa, Oceania and recently in South America underlines the importance of the study of the ecology of highland mosquito vectors of malaria. Since the incidence of malaria is limited by the distribution of its vectors, the purpose of this PhD thesis was to examine aspects of the ecology of Anopheles mosquitoes in the Andes of Ecuador, South America. A historical literature and archival data review (Chapter 2) indicated that Anopheles pseudopunctipennis transmitted malaria in highland valleys of Ecuador prior to 1950, although it was eliminated through habitat removal and the use of chemical insecticides. Other anopheline species were previously limited to low-altitude regions, except in a few unconfirmed cases. A thorough larval collection effort (n=438 attempted collection sites) in all road-accessible parts of Ecuador except for the lowland Amazon basin was undertaken between 2008 - 2010 (Chapter 3). Larvae were identified morphologically and using molecular techniques (mitochondrial COl gene), and distribution maps indicated that all five species collected (Anopheles albimanus, An. pseudopunctipennis, Anopheles punctimacula, Anopheles oswaldoi s.l. and Anopheles eiseni) were more widespread throughout highland regions than previously recorded during the 1940s, with higher maximum altitudes for all except An. pseudopunctipennis (1541 m, 1930 m, 1906 m, 1233 m and 1873 m, respectively). During larval collections, to characterize species-specific larval habitat, a variety of abiotic and biotic habitat parameters were measured and compared between species-present and species-absent sites using chi-square tests and stepwise binary logistic regression analyses (Chapter 4). An. albimanus was significantly associated with permanent pools with sand substrates and An. pseudopunctipennis with gravel and boulder substrates. Both species were significantly associated with floating cyanobacterial mats and warmer temperatures, which may limit their presence in cooler highland regions. Anopheles punctimacula was collected more often than expected from algae-free, shaded pools with higher-than-average calculated dissolved oxygen. Anopheles oswaldoi s.l., the species occurring on the Amazonian side of the Andes, was associated with permanent, anthropogenic habitats such as roadside ditches and ponds. To address the hypothesis that human land use change is responsible for the emergence of multiple highland Anopheles species by creating larval habitat, common land uses in the western Andes were surveyed for standing water and potential larval habitat suitability (Chapter 5). Rivers and road edges provided large amounts of potentially suitable anopheline habitat in the western Andes, while cattle pasture also created potentially suitable habitat in irrigation canals and watering ponds. Other common land uses surveyed (banana farms, sugarcane plantations, mixed tree plantations, and empty lots) were usually established on steep slopes and had very little standing water present. Using distribution and larval habitat data, a GIS-based larval habitat distribution model for the common western species was constructed in ArcGIS v.l 0 (ESRI 2010) using derived data layers from field measurements and other sources (Chapter 6). The additive model predicted 76.4 - 97.9% of the field-observed collection localities of An. albimanus, An. pseudopunctipennis and An. punctimacula, although it could not accurately distinguish between species-absent and speciespresent sites due to its coarse scale. The model predicted distributional expansion and/or shift of one or more anopheline species into the following highland valleys with climate warming: Mira/Chota, Imbabura province, Tumbaco, Pichincha province, Pallatanga and Sibambe, Chimborazo province, and Yungilla, Azuay province. These valleys may serve as targeted sites of future monitoring to prevent highland epidemics of malaria. The human perceptions of malaria and mosquitoes in relation to land management practices were assessed through an interview-based survey (n=262) in both highlands and lowlands, of male and female land owners and managers of five property types (Chapter 7). Although respondents had a strong understanding of where the disease occurs in their own country and of the basic relationship among standing water, mosquitoes and malaria, about half of respondents in potential risk areas denied the current possibility of malaria infection on their own property. As well, about half of respondents with potential anopheline larval habitat did not report its presence, likely due to a highly specific definition of suitable mosquito habitat. Most respondents who are considered at risk of malaria currently use at least one type of mosquito bite prevention, most commonly bed nets. In conclusion, this interdisciplinary thesis examines the occurrence of Anopheles species in the lowland transition area and highlands in Ecuador, from a historic, geographic, ecological and sociological perspective.
Resumo:
Metarhizium is a soil-inhabiting fungus currently used as a biological control agent against various insect species, and research efforts are typically focused on its ability to kill insects. In section 1, we tested the hypothesis that species of Metarhizium are not randomly distributed in soils but show plant rhizosphere-specific associations. Results indicated an association of three Metarhizium species (Metarhizium robertsii, M. brunneum and M. guizhouense) with the rhizosphere of certain types of plant species. M. robertsii was the only species that was found associated with grass roots, suggesting a possible exclusion of M. brunneum and M. guizhouense, which was supported by in vitro experiments with grass root exudate. M. guizhouense and M. brunneum only associated with wildflower rhizosphere when co-occurring with M. robertsii. With the exception of these co-occurrences, M. guizhouense was found to associate exclusively with the rhizosphere of tree species, while M. brunneum was found to associate exclusively with the rhizosphere of shrubs and trees. These associations demonstrate that different species of Metarhizium associate with specific plant types. In section 2, we explored the variation in the insect adhesin, Madl, and the plant adhesin, Mad2, in fourteen isolates of Metarhizium representing seven different species. Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions. Phylogenetic analysis of 5' EF-Ia, which is used for species identification, as well as Madl and Mad2 sequences demonstrated that the Mad2 phylogeny is more congruent with 5' EF-1a than Madl. This suggests Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation. While other abiotic and biotic factors cannot be excluded in contributing to divergence, it appears that plant associations have been the driving factor causing divergence among Metarhizium species.
Resumo:
Several species of the insect pathogenic fungus Metarhizium are associated with certain plant types and genome analyses suggested a bifunctional lifestyle; as an insect pathogen and as a plant symbiont. Here we wanted to explore whether there was more variation in genes devoted to plant association (Mad2) or to insect association (Mad1) overall in the genus Metarhizium. Greater divergence within the genus Metarhizium in one of these genes may provide evidence for whether host insect or plant is a driving force in adaptation and evolution in the genus Metarhizium. We compared differences in variation in the insect adhesin gene, Mad1, which enables attachment to insect cuticle, and the plant adhesin gene, Mad2, which enables attachment to plants. Overall variation for the Mad1 promoter region (7.1%), Mad1 open reading frame (6.7%), and Mad2 open reading frame (7.4%) were similar, while it was higher in the Mad2 promoter region (9.9%). Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions, while this level of variation was not found for Mad1. Sequences were also phylogenetically compared to EF-1a, which is used for species identification, in 14 isolates representing 7 different species in the genus Metarhizium. Phylogenetic analysis demonstrated that the Mad2 phylogeny is more congruent with 59 EF-1a than Mad1. This would suggest that Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation, while it appears that Mad1 has been largely conserved. While other abiotic and biotic factors cannot be excluded in contributing to divergence, these results suggest that plant relationships, rather than insect host, have been a major driving factor in the divergence of the genus Metarhizium.
Resumo:
Several species of the insect pathogenic fungus Metarhizium are associated with certain plant types and genome analyses suggested a bifunctional lifestyle; as an insect pathogen and as a plant symbiont. Here we wanted to explore whether there was more variation in genes devoted to plant association (Mad2) or to insect association (Mad1) overall in the genus Metarhizium. Greater divergence within the genus Metarhizium in one of these genes may provide evidence for whether host insect or plant is a driving force in adaptation and evolution in the genus Metarhizium. We compared differences in variation in the insect adhesin gene, Mad1, which enables attachment to insect cuticle, and the plant adhesin gene, Mad2, which enables attachment to plants. Overall variation for the Mad1 promoter region (7.1%), Mad1 open reading frame (6.7%), and Mad2 open reading frame (7.4%) were similar, while it was higher in the Mad2 promoter region (9.9%). Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions, while this level of variation was not found for Mad1. Sequences were also phylogenetically compared to EF-1a, which is used for species identification, in 14 isolates representing 7 different species in the genus Metarhizium. Phylogenetic analysis demonstrated that the Mad2 phylogeny is more congruent with 59 EF-1a than Mad1. This would suggest that Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation, while it appears that Mad1 has been largely conserved. While other abiotic and biotic factors cannot be excluded in contributing to divergence, these results suggest that plant relationships, rather than insect host, have been a major driving factor in the divergence of the genus Metarhizium.