12 resultados para infinitesimal generator
em Brock University, Canada
Resumo:
The original objective of this work was to provide a simple generator w.hich would produce hydrogen torLfuel-cell feed and which could be operated under remote or northern conditions. A secondary objective was to maximize the yield of hydrogen and carbon monoxide from available feed-stocks. A search of the patent literature has indicated that the concept of a small Wulff-type generator is essentially sound and that hydrogen may be recovered from a wide variety of hydrocarbon feed-stocks. A simple experimental set-up has been devised, patterned after ~~t originally used by R. G. Wulff for producing acetylene. This provides a supply of feed-stock, with or Without a carrier gas, which may be passed directly through a heated tube, which may contain a catalyst. A suitable procedure has been devised for analysi~ effluent gases for hydrogen, oxygen, nitrogen, methane and carbon monoxide by gas chromatography with the column packed with .Molecular .:>ieve .5 4. Athanol with air a.s carrier gas and at the same time as oxidant o was thermolyzed at temperatures in the ra~e 700-1100 C, with or Wi~lout catalyst. Methanol with or without nitrogen as a carrier gas was also cracked with • the same type of reactor refractory tube, but the temperature range was lower t down to ,300 " C when a catalyst was used. The problems of converting methane to hydrogen and carbon monoxide effiCiently, using air and/or water as oxidants were also studied.
Resumo:
Self-dual doubly even linear binary error-correcting codes, often referred to as Type II codes, are codes closely related to many combinatorial structures such as 5-designs. Extremal codes are codes that have the largest possible minimum distance for a given length and dimension. The existence of an extremal (72,36,16) Type II code is still open. Previous results show that the automorphism group of a putative code C with the aforementioned properties has order 5 or dividing 24. In this work, we present a method and the results of an exhaustive search showing that such a code C cannot admit an automorphism group Z6. In addition, we present so far unpublished construction of the extended Golay code by P. Becker. We generalize the notion and provide example of another Type II code that can be obtained in this fashion. Consequently, we relate Becker's construction to the construction of binary Type II codes from codes over GF(2^r) via the Gray map.
Resumo:
A flow injection hydride generation direct current plasma atomic emission spectrometric (FI-HG-DCP-AES) method was developed for the determination of lead at ng.ml-l level. Potassium ferricyanide (K3Fe(CN)6) was used along with sodium tetrahydroborate(III) (NaBH4) to produce plumbane (PbH4) in an acid medium. The design of a gas-liquid separator (hydride generator) was tested and the parameters of the flow injection system were optimized to achieve a good detection limit and sample throughput. The technique developed gave a detection limit of 0.7 ng.ml-l(3ob). The precision at 20 ng.ml"* level was 1.6 % RSD with 1 1 measurements (n=l 1). Volume of sample loop was 500 |J.l. A sample throughput of 120 h"^ was achieved. The transition elements, Fe(II), FeOH), Cd(n), Co(II), Mn(n), Ni(II) and Zn(n) do not interfere in this method but 1 mg,l'l Cu(II) will suppress 50 % of the signal from a sample containing 20 ng.ml'l Pb. This method was successfully applied to determine lead in a calcium carbonate (CaC03) matrix of banded coral skeletons from Si-Chang Island in Thailand.
Resumo:
We examined three different algorithms used in diffusion Monte Carlo (DMC) to study their precisions and accuracies in predicting properties of isolated atoms, which are H atom ground state, Be atom ground state and H atom first excited state. All three algorithms — basic DMC, minimal stochastic reconfiguration DMC, and pure DMC, each with future-walking, are successfully impletmented in ground state energy and simple moments calculations with satisfactory results. Pure diffusion Monte Carlo with future-walking algorithm is proven to be the simplest approach with the least variance. Polarizabilities for Be atom ground state and H atom first excited state are not satisfactorily estimated in the infinitesimal differentiation approach. Likewise, an approach using the finite field approximation with an unperturbed wavefunction for the latter system also fails. However, accurate estimations for the a-polarizabilities are obtained by using wavefunctions that come from the time-independent perturbation theory. This suggests the flaw in our approach to polarizability estimation for these difficult cases rests with our having assumed the trial function is unaffected by infinitesimal perturbations in the Hamiltonian.
Resumo:
The freshwater mollusc Lymnaea stagnalis was utilized in this study to further the understanding of how network properties change as a result of associative learning, and to determine whether or not this plasticity is dependent on previous experience during development. The respiratory and neural correlates of operant conditioning were first determined in normally reared Lymnaea. The same procedure was then applied to differentially reared Lymnaea, that is, animals that had never experienced aerial respiration during their development. The aim was to determine whether these animals would demonstrate the same responses to the training paradigm. In normally reared animals, a behavioural reduction in aerial respiration was accompanied by numerous changes within the neural network. Specifically, I provide evidence of changes at the level of the respiratory central pattern generator and the motor output. In the differentially reared animals, there was little behavioural data to suggest learning and memory. There were, however, significant differences in the network parameters, similar to those observed in normally reared animals. This demonstrated an effect of operant conditioning on differentially reared animals. In this thesis, I have identified additional correlates of operant conditioning in normally reared animals and provide evidence of associative learning in differentially reared animals. I conclude plasticity is not dependent on previous experience, but is rather ontogenetically programmed within the neural network.
Resumo:
The aim of this study was to investigate the neural correlates of operant conditioning in a semi-intact preparation of the pond snail, Lymnaea stagnalis. Lymnaea learns, via operant conditioning, to reduce its aerial respiratory behaviour in response to an aversive tactile stimulus to its open pneumostome. This thesis demonstrates the successful conditioning of na'ive semiintact preparations to show learning in the dish. Furthermore, these conditioned preparations show long-term memory that persists for at least 18 hours. As the neurons that generate this behaviour have been previously identified I can, for the first time, monitor neural activity during both learning and long-term memory consolidation in the same preparation. In particular, I record from the respiratory neuron Right Pedal Dorsal 1 (RPeD 1) which is part of the respiratory central pattern generator. In this study, I demonstrate that preventing RPeDl impulse activity between training sessions reduces the number of sessions needed to produce long-term memory in the present semi-intact preparation.
Resumo:
Modifications to the commercial hydride generator, manufactured by Spectrametrics, resulted in improved operating procedure and enhancement of the arsenic and germanium signals. Experiments with arsenic(III) and arsenic(V) showed that identical reiults could be produced from both oxidation states. However, since arsenic(V) is reduced more slowly than arsenic(III), peak areas and not peak heights must be measured when the arsine is immediately stripped from the system (approximately 5 seconds reaction). When the reduction is allowed to proceed for 20 seconds before the arsine is stripped, peak heights may be used. For a 200 ng/mL solution, the relative standard deviation is 2.8% for As(III) and 3.8% for As(V). The detection limit for arsenic using the modified system is 0.50 ng/mL. Studies performed on As(V) standards show that the interferences from 1000 mg/L of nickel(II), cobalt(II), iron(III), copper(II), cadmium(II), and zinc(II) can be eliminated with the aid of 5 M Hel and 3% L-cystine. Conditions for the reduction of germanium to the corresponding hydride were investigated. The effect of different concentrations of HCl on the reduction of germanium to the covalent hydride in aqueous media by means of NaBH 4 solutions was assessed. Results show that the best response is accomplished at a pH of 1.7. The use of buffer solutions was similarly characterized. In both cases, results showed that the element is best reduced when the final pH of the solution after reaction is almost neutral. In addition, a more sensitive method, which includes the use of (NH4)2S208' has been developed. A 20% increase in the germanium signal is registered when compared to the signal achieved with Hel alone. Moreover, under these conditions, reduction of germanium could be accomplished, even when the solution's pH is neutral. For a 100 ng/mL germanium standard the rsd is 3%. The detection limit for germanium in 0.05 M Hel medium (pH 1.7) is 0.10 ng/mL and 0.09 ng/mL when ammonium persulphate is used in conjunction with Hel. Interferences from 1000 mg/L of iron(III), copper(II), cobalt(II), nickel(II), cadmium(II), lead(II), mercury(II), aluminum(III), tin(IV), arsenic(III), arsenic(V) and zinc(II) were studied and characterized. In this regard, the use of (NH4)ZS20S and Hel at a pH of 1.7 proved to be a successful mixture in the sbppression of the interferences caused by iron, copper, aluminum, tin, lead, and arsenic. The method was applied to the determination of germanium in cherts and iron ores. In addition, experiments with tin(IV) showed that a 15% increase in the tin signal can be accomplished in the presence of 1 mL of (NH4)2S20S 10% (m/V).
Resumo:
Improvements have been made on the currently available hydride generator system manufactured by SpectraMetrics Incorporated, because the system was found to be unsatisfactory with respect to the following: 1. the drying agent, anhydrous calcium chloride, 2. the special sample tube, 3. the direction of argon flow through the Buchner funnel when it came to dealing with real sample, that is, with reference only to aqueous extracts of soil samples. Changes that were made on the system included the replacement of anhydrous calcium chloride with anhydrous calcium sulphate and the replacement of the special sample tube with a modified one made from silica. Re-directing the flow of argon through the top of the Buchner funnel appeared to make the system compatible with aqueous extracts of soil samples. The interferences from 1000 ~g/mL of nickel(II) , cobalt(II), iron(III), copper(II) have been eliminated with the aid of 1.4 M hydrochloric acid and 1% (weight/volume) L-cystine. Greater than 90% recovery of 0.3 ~g/mL arsenic signal was achieved in each case. Furthermore, 103% of arsenic signal was accomplished in the presence of 1000 ~g/mL cadmium with 5 M Hel. tVhen each of the interferents was present in solution at 1000 ppm, a recovery of 85% was achieved by using 5 M hydrochloric acid and 3% (weight/volume) L-cystine. Without L-cystine and when 1.4 M hydrochloric acid was used, the recoveries were 0% (Ni), 0% (Co), 88% (Fe), 15% (Cu), 18% (Cd). Similarly, a solution containing 1000 ppm of each interferent gave a zero percent recovery of arsenic. The reduction of trivalent and pentavalent arsenic at a pH less than one has also been investigated and shown to be quantitative if peak areas are measured. The reproducibility determination of a 0.3 Vg/mL standard arsenic solution by hydride generation shows a relative standard deviation of 3.4%. The detection limits with and without Porapak Q have been found to be 0.6 ng/mL and 1.0 ng/mL, respectively.
Resumo:
The infinitesimal differential quantum Monte Carlo (QMC) technique is used to estimate electrostatic polarizabilities of the H and He atoms up to the sixth order in the electric field perturbation. All 542 different QMC estimators of the nonzero atomic polarizabilities are derived and used in order to decrease the statistical error and to obtain the maximum efficiency of the simulations. We are confident that the estimates are "exact" (free of systematic error): the two atoms are nodeless systems, hence no fixed-node error is introduced. Furthermore, we develope and use techniques which eliminate systematic error inherent when extrapolating our results to zero time-step and large stack-size. The QMC results are consistent with published accurate values obtained using perturbation methods. The precision is found to be related to the number of perturbations, varying from 2 to 4 significant digits.
Resumo:
Power at the Falls: The first recorded harnessing of Niagara Falls power was in 1759 by Daniel Joncairs. On the American side of the Falls he dug a small ditch and drew water to turn a wheel which powered a sawmill. In 1805 brothers Augustus and Peter Porter expanded on Joncairs idea. They bought the American Falls from New York State at public auction. Using Joncairs old site they built a gristmill and tannery which stayed in business for twenty years. The next attempt at using the Falls came in 1860 when construction of the hydraulic canal began by the Niagara Falls Hydraulic Power and Manufacturing Co. The canal was complete in 1861 and brought water from the Niagara river, above the falls, to the mills below. By 1881 the Niagara Falls Hydraulic Power and Manufacturing Co. had a small generating station which provided some electricity to the village of Niagara Falls and the Mills. This lasted only four years and then the company sold its assets at public auction due to bankruptcy. Jacob Schoellkopf arrived at the Falls in 1877 with the purchase of the hydraulic canal land and water and power rights. In 1879 Schoellkopf teamed up with Charles Brush (of Euclid Ohio) and powered Brush’s generator and carbon arc lights with the power from his water turbines, to illuminate the Falls electrically for the first time. The year 1895 marked the opening of the Adam No. 1 generating station on the American side. The station was the beginnings of modern electrical utility operations. The design and operations of the generating station came from worldwide competitions held by panels of experts. Some who were involved in the project include; George Westinghouse, J. Pierpont Morgan, Lord Kelvin and Nikoli Tesla. The plants were operated by the Niagara Falls Power Company until 1961, when the Robert Moses Plant began operation in Lewiston, NY. The Adams plants were demolished that same year and the site used as a sewage treatment plant. The Canadian side of the Falls began generating their own power on January 1, 1905. This power came from the William Birch Rankine Power Station located 500 yards above the Horseshoe Falls. This power station provided the village of Fort Erie with its first electricity in 1907, using its two 10,000 electrical horsepower generators. Today 11 generators produce 100,000 horsepower (75 megawatts) and operate as part of the Niagara Mohawk and Fortis Incorporated Power Group.
Resumo:
Dynamic logic is an extension of modal logic originally intended for reasoning about computer programs. The method of proving correctness of properties of a computer program using the well-known Hoare Logic can be implemented by utilizing the robustness of dynamic logic. For a very broad range of languages and applications in program veri cation, a theorem prover named KIV (Karlsruhe Interactive Veri er) Theorem Prover has already been developed. But a high degree of automation and its complexity make it di cult to use it for educational purposes. My research work is motivated towards the design and implementation of a similar interactive theorem prover with educational use as its main design criteria. As the key purpose of this system is to serve as an educational tool, it is a self-explanatory system that explains every step of creating a derivation, i.e., proving a theorem. This deductive system is implemented in the platform-independent programming language Java. In addition, a very popular combination of a lexical analyzer generator, JFlex, and the parser generator BYacc/J for parsing formulas and programs has been used.
Resumo:
A blueprint produced by Westinghouse Electric & MFG. Co. in Pittsburgh, Pennsylvanna. The blueprint is dated 19 August 1903 and is stamped "OBSOLETE".