3 resultados para in comparison with abundance of measurements (p)
em Brock University, Canada
Resumo:
Functional Electrically Stimulated (FES) ami cycle ergometry is a relatively new technique for exercise in individuals with impairments of the upper limbs. The purpose of this study was to determine the effects of 12 weeks of FES arm cycle ergometry on upper limb function and cardiovascular fitness in individuals with tetraplegia. F!ve subjects (4M/1F; mean age 43.8 ± 15.4 years) with a spinal cord injury of the cervical spine (C3- C7; ASIA B-D) participated in 12 weeks of3 times per week FES arm cycle ergometry training. Exercise performance measures (time to fatigue, distance to fatigue, work rate) were taken at baseline, 6 weeks, and following 12 weeks of training. Cardiovascular measures (MAP, resting HR, average and peak HR during exercise, cardiovascular efficiency) and self reported upper limb function (as determined by the CUE, sf-QIF, SCI-SET questionnaires) were taken at baseline and following 12 weeks of training. Increases were found in time to fatigue (84.4%), distance to fatigue (111.7%), and work rate (51.3%). These changes were non-significant. There was a significant decrease in MAP (91.1 ± 13.9 vs. 87.7 ± 14.7 mmHg) following 12 weeks ofFES arm cycle ergometry. There was no significant change in resting HR or average and peak HR during exercise. Cardiovascular efficiency showed an increase following the 12 weeks ofFES training (142.9%), which was non-significant. There were no significant changes in the measures of upper limb function and spasticity. Overall, FES arm cycle ergometry is an effective method of cardiovascular exercise for individuals with tetraplegia, as evidenced by a significant decrease in MAP, however it is unclear whether 12 weeks of thrice weekly FES arm cycle ergometry may effectively improve upper limb function in all individuals with a cervical SCI.
Resumo:
Molec ul ar dynamics calculations of the mean sq ua re displacement have been carried out for the alkali metals Na, K and Cs and for an fcc nearest neighbour Lennard-Jones model applicable to rare gas solids. The computations for the alkalis were done for several temperatures for temperature vol ume a swell as for the the ze r 0 pressure ze ro zero pressure volume corresponding to each temperature. In the fcc case, results were obtained for a wide range of both the temperature and density. Lattice dynamics calculations of the harmonic and the lowe s t order anharmonic (cubic and quartic) contributions to the mean square displacement were performed for the same potential models as in the molecular dynamics calculations. The Brillouin zone sums arising in the harmonic and the quartic terms were computed for very large numbers of points in q-space, and were extrapolated to obtain results ful converged with respect to the number of points in the Brillouin zone.An excellent agreement between the lattice dynamics results was observed molecular dynamics and in the case of all the alkali metals, e~ept for the zero pressure case of CSt where the difference is about 15 % near the melting temperature. It was concluded that for the alkalis, the lowest order perturbation theory works well even at temperat ures close to the melting temperat ure. For the fcc nearest neighbour model it was found that the number of particles (256) used for the molecular dynamics calculations, produces a result which is somewhere between 10 and 20 % smaller than the value converged with respect to the number of particles. However, the general temperature dependence of the mean square displacement is the same in molecular dynamics and lattice dynamics for all temperatures at the highest densities examined, while at higher volumes and high temperatures the results diverge. This indicates the importance of the higher order (eg. ~* ) perturbation theory contributions in these cases.
Resumo:
Behavioral researchers commonly use single subject designs to evaluate the effects of a given treatment. Several different methods of data analysis are used, each with their own set of methodological strengths and limitations. Visual inspection is commonly used as a method of analyzing data which assesses the variability, level, and trend both within and between conditions (Cooper, Heron, & Heward, 2007). In an attempt to quantify treatment outcomes, researchers developed two methods for analysing data called Percentage of Non-overlapping Data Points (PND) and Percentage of Data Points Exceeding the Median (PEM). The purpose of the present study is to compare and contrast the use of Hierarchical Linear Modelling (HLM), PND and PEM in single subject research. The present study used 39 behaviours, across 17 participants to compare treatment outcomes of a group cognitive behavioural therapy program, using PND, PEM, and HLM on three response classes of Obsessive Compulsive Behaviour in children with Autism Spectrum Disorder. Findings suggest that PEM and HLM complement each other and both add invaluable information to the overall treatment results. Future research should consider using both PEM and HLM when analysing single subject designs, specifically grouped data with variability.