6 resultados para ice sheet

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transverse, subglacial bedforms (ribbed moraines) occur frequently in southern Keewatin, Nunavut, Canada, where they record a complex glacial history, including shifting centers of ice dispersal and fluctuating basal thermal regimes. Comprehensive mapping and quantitative morphometric analysis of the subglacial bedform archive in this sector reveals that ribbed moraines are spatially clustered by size and assume a broad range of visually distinct forms. Results suggest that end-member morphologies are consistent with a dichotomous polygenetic origin, and that a continuum of forms emerged through subsequent reshaping processes of variable intensity and duration. Translocation of mobile, immobile and quasi-mobile beds throughout the last glacial cycle conditioned the development of a subglacial deforming bed mosaic, and is likely responsible for the patchy zonation of palimpsest and inherited landscape signatures within this former core region of the Laurentide Ice Sheet. Comparison against field evidence collected from central Norway suggests that bedforming processes can be locally mediated by pre-existing topography.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Palynomorphs from two siliciclastic margins were examined to gain insights into continental margin architecture. Sea level change is thought to be one of the primary controls on continental margin architecture. Because Late Neogene glacioeustasy has been well studied marine sediments deposited during the Late Neogene were examined to test this concept. Cores from the outer shelf and upper slope were taken from the New Jersey margin in the western North Atlantic Ocean and from the Sunda Shelf margin in the South China Sea. Continental margin architecture is often described in a sequence stratigraphic context. One of the main goals of both coring projects was to test the theoretical sequence stratigraphic models developed by a research group at Exxon (e.g. Wilgus et al., 1988). Palynomorphs provide one of the few methods of inferring continental margin architecture in monotonous, siliciclastic marine sediments where calcareous sediments are rare (e.g. New Jersey margin). In this study theoretical models of the palynological signature expected in sediment packages deposited during the various increments of a glacioeustatic cycle were designed. These models were based on the modem palynomorph trends and taphonomic factors thought to control palynomorph distribution. Both terrestrial (pollen and spores) and marine (dinocysts) palynomorphs were examined. The palynological model was then compared with New Jersey margin and Sunda Shelf margin sediments. The predicted palynological trends provided a means of identifying a complete cycle of glacioeustatic change (Oxygen Isotope Stage 5e to present) in the uppermost 80 meters of sediment on the slope at the New Jersey margin. Sediment availability, not sea meters of sediment on the slope at the New Jersey margin. Sediment availability, not sea level change, is thought to be the major factor controlling margin architecture during the late Pleistocene here at the upper slope. This is likely a function of the glacial scouring of the continents which significantly increases sediment availability during glacial stages. The subaerially exposed continental shelf during the lowstand periods would have been subject to significant amounts of erosion fi:om the proglacial rivers flowing fi-om the southern regions of the ice-sheet. The slope site is non-depositional today and was also non-depositional during the last full interglacial period. The palynomorph data obtained fi-om the South China Sea indicate that the major difference between the New Jersey Margin sites and the Sunda Shelf margin sites is the variation in sediment supply and the rate of sediment accumulation. There was significantly less variation in sediment supply between glacial and interglacial periods and less overall sediment accumulation at the Sunda Shelf margin. The data presented here indicate that under certain conditions the theoretical palynological models allow the identification of individual sequence stratigraphic units and therefore, allow inferences regarding continental margin architecture. The major condition required in this approach is that a complete and reliable database of the contemporaneous palynomorphs be available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sedjrrlents deposited in the Late Quaternary marine sUbrnergences that follov'ted the deglaciation of Ontario} Quebec., and 6ritlst-1 Columbia often contaln an abundant nlarlne invertebrate macrofauna. The rnacrofauna~ dotYllnated by aragonitic pelecypods} is fully preserved In their original mineralogy and cherrlistry 8S deternl1ned by x-ray dlffractlon., scannlng electron tl-,lcroscoDY., trace and r1l1 nor elet11ent analyses and stable isotopes. Ttle trace elernent and stable isotope geochen-Ilstry of chernlcal1y unaltered aragorlitlc molluscs can be used to determine paleoter1-lperatures and paleosallnltles." HO\Never} corrections need to be tllade \fvtlen deterrTIlnlng oxygen-isotope paleotenlperi:ttures due to the lnfluence of isotopically 11gtlt glaciol rneltv-laters and reduced sal1nltles. Ttle eastern Laurentide Ice Sheet probably had an o:~ygen lS0tOP1C composition as low as -8e) 0/00 (Sr1[IW). In additl0fl} corrections need to be rnade to the carbonlsotope values, before salinity deterrnlnatlons are t11ade., due to the reJjuctlon of the terrestrial carbon bl0rnass during glac1al maxlrna. Using geochernlcal data frot11 537 marlne n-'8crolnvertebrates frorTI 72 localities in soutt-,easter Ontarl0 and southern Quebec, it tras been deterrnined that the Late Quaternary Char1lplaln Sea \N6S density stratified along salinity and temperatlJre gradients. The deep-\h/aters of tt-,e Charnplaln Sea tlad salinities that ranged frorn 31 to 36 ppt} and terrlperatures of 00 to 5°C. Conversely.. the st1alloy./-\f*later regirrle of ttle Ctlarnplaln Sea tlad sal1nltles that ranged fron-, 24 to 33 ppt} Y.tltt1 terrlperatures ranglng from 5° to 15°C. Tr,8 rrlajorl rnlnor1 and trace e1et1-,ent geochernlcal analysls of 155 marine lnvertebrates frorn 4 10C611t1es of tt-,e Late Quaternary Ft. Langley Forrnatlon and Capl1ano Sedlments;. souttl\Nestern Brltlsh Columblal suggest l t~lat the 'waters of the o-,arlne lnundation that fol1o....ved the retreating Cordl11eran Ice Sheet had sal1nltles ranglng frorn 32 to 3f. DPt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The drumlin sediments at Chimney Bluffs, New York appear to represent a block-inmatrix style glacial melange. This melange comprises sand stringers, lenses and intraclasts juxtaposed in an apparently massive diamicton. Thin section examination of these glacigenic deposits has revealed microstructures indicative of autokinetic subglacial defonnation which are consistent with a deformable bed origin for the diamicton. These features include banding and. necking of matrix grains, oriented plasma fabrics and the formation of pressure shadows at the long axis ends of elongate clasts. Preservation of primary stratification within the sand intraclasts appears to suggest that these features were pre-existing up-ice deposits that were frozen, entrained, then deposited as part of a defonning till layer beneath an advancing ice sheet. Multi-directional micro-shearing within the sand blocks is thought to reflect the frozen nature of the sand units in such a high strain environment. It is also contended that dewatering of the sediment pile leading to the eventual immobilisation of the defonning till layer was responsible for opening sub-horizontal fissures within the diamicton. These features were subsequently infilled with mass flow poorly sorted sands and silts which were subjected to ductile defonnation during the waning stages of an actively deforming till layer. Microstructures indicative of the dewatering processes in the sand units include patches of fine-grained particles within a coarser-grained matrix and the presence of concentrated zones of translocated clays. However, these units were probably confined within an impermeable diamicton casing that prevented massive pore water influxes from the deforming till layer~ Hence, these microstructures probably reflect localised dewatering of the sand intraclasts. A layered subglacial shear zone model is proposed for the various features exhibited by the drumlin sediments. The complexity of these structures is explained in terms of ii superposing deformation styles in response to changing pore water pressures. Constructional glaciotectonics, as implied by the occurrence of sub-horizontal fissuring, is suggested as the mechanism for the stacking of the sand intraclast units within the diamicton. The usefulness of micromorphology in complimenting the traditional sedimentology of glacigenic deposits is emphasised by the current study. An otherwise massive diamicton was shown to contain microstructures indicative of the very high strain rates expected in a complexly deforming till layer. . It is quite obvious from this investigation that the classification of diamictons needs to be re-examined for evidence of microstructures that could lead to the re-interpretation of diamicton forming processes. RESUME Le pacquet de sediments drumlinaire de Chimney Bluffs, New York, represent un "bloc-en-matrice" genre de melange glaciale. Des structures microscopique comprennent l'evidence pour la defonnation intrinseque attribuee a l'origine lit non resistant du drumlin. PreselVation des structures primaires au coeur des blocs arenaces suggere que ceux sont des depots preexistant qui furent geles, entraines et par la suite sedimentes au milieu d'une couche de debris sous-glaciaires en voie de deformation. Des failles microscopiques a l'interieur des blocs arenaces appuient aussi l'idee d'un bloc cohesif (c'est-a-dire gele) au centre d'un till non resistant. Des implications significatives s'emergent de cette etude pour les conditions sous-glaciaire et les processus de la formation des drumlin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various lake phases have developed in the upper Great Lakes in response to isostatic adjustment and changes in water supply since the retreat of the Laurentide Ice Sheet. Georgian Bay experienced a lowstand that caused a basin wide unconformity approximately 7,500 years ago that cannot be explained by geological events. Thecamoebians are shelled protozoans abundant in freshwater environments and they are generally more sensitive to changing environmental conditions than the surrounding vegetation. Thecamoebians can be used to reconstruct the paleolimnology. The abundance of thecamoebians belonging to the genus Centropyxis, which are known to tolerate slightly brackish conditions (i.e. high concentrations of ions) records highly evaporative conditions in a closed basin. During the warmer interval (9000 to 700 yBP), the Centropyxis - dominated population diminishes and is replaced by an abundant and diverse Difflugia dominate population. Historical climate records from Tobermory and Midland, Ontario were correlated with the Lake Huron water level curve. The fossil pollen record and comparison with modem analogues allowed a paleo-water budget to be calculated for Georgian Bay. Transfer function analysis of fossil pollen data from Georgian Bay records cold, dry winters similar to modem day Minneapolis, Minnesota. Drier climates around this time are also recorded in bog environments in Southem Ontario - the drying of Lake Tonawanda and inception of paludification in Willoughby Bog, for instance, dates around 7,000 years ago. The dramatic impact of climate change on the water level in Georgian Bay underlines the importance of paleoclimatic research for predicting future environmental change in the Great Lakes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This investigation aims to gain a better understanding of the glacial history of the Pine Point Mining district, Northwest Territories, by examining the sedimentological properties of the glacial sediments including, geochemical analysis, heavy mineral concentrate analysis, clast macro-­‐fabrics, pebble lithologies, and micromorphological investigation. Four till units were identified, and three were associated with identified erosional bedrock features and streamlined landforms in the area, indicating a minimum of three ice flow directions. Sedimentological properties suggest that these units were all Type-­B tectomict/mélange till, emplaced as part of a soft subglacial deformable bed. The lack of ice-­‐marginal advance and retreat sequences within the studied till, suggests the Middle Wisconsinan Laurentide Ice margin was likely north and west of the Pine Point area, as opposed to along the margin of the Canadian Shield and Western Sedimentary Basin where it has been suggested to have existed.