15 resultados para hyoid bone

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Background: Previous studies have implied that weight-bearing, intense and prolonged physical activities optimize bone accretion during the grow^ing years. The majority of past inquiries have used dual-energy X-ray absorptiometry (DXA) to examine bone strength and hand-wrist radiography to determine skeletal maturity in children. Recently, quantitative ultrasound (QUS) technologies have been developed to examine bone properties and skeletal maturity in a safe, noninvasive and cost-effective manner. Objective: The purpose of this study was to compare bone properties and skeletal maturity in competitive male child and adolescent athletes with minimallyactive, age-matched controls, using QUS technology. >. Methods: In total, 224 males were included in the study. The 115 pre-pubertal boys aged 10-12 years consisted of control, minimally-active children (n=34), soccer players (n=26), gymnasts (n=25) and hockey players (n=30). In addition, the 109 late-pubertal boys aged 14-16 years consisted of control, minimally-active adolescents (n=31), soccer players (n=30), gymnasts (n=17) and hockey players (n=31). The athletic groups were elite level players that predominantly trained year-round. Physical activity, nutrition and sports participation were assessed with various questionnaires. Anthropometries, such as height, weight and relative body fat percentage (BF%) were assessed using standard measures. Skeletal strength and age were evaluated using bone QUS. Lastly, salivary testosterone (sT) concentration was measured using Radioimmunoassay (RIA). Results: Within each age group, there were no significant differences between the activity groups in age and pubertal stage. An age effect was apparent in all variables, as expected. A sport effect was noted in all physical characteristics: the child and adolescent gymnasts were shorter and lighter than other sports groups. Adiposity was greater in the controls and in the hockey players. All child subjects were pubertal stage (fanner) I or II, while adolescent subjects were pubertal stage IV or V. There were no differences in daily energy and mineral intakes between sports groups. In both age groups, gymnasts had a higher training volume than other athletic groups. Bone speed of sound (50s) was higher in adolescents compared with the children. Gymnasts had signifieantly higher radial 50S than controls, hockey and soccer players in both age cohorts. Hockey athletes also had higher radial 50S than controls and soccer players in the child and adolescent groups, respectiyely. Child gymnasts and soccer players had greater tibial 50S compared with the hockey players and control groups. Likewise, adolescent gymnasts and soccer players had higher tibial SoS compared with the control group. No interaction was apparent between age and type of activity in any of the bone measures. » Lastly, maturity as assessed by sT and secondary sex characteristics (Tanner stage) was not different between sports group within each age group. Despite the similarity in chronological age, androgen levels and sexual maturity, differences between activity groups were noted in skeletal maturity. In the younger group, hockey players had the highest bone age while the soccer players had the lowest bone age. In the adolescent group, gymnasts and hockey players were characterized by higher skeletal maturity compared with controls. An interaction between the age and sport type effects was apparent in skeletal maturity, reflecting the fact that among the children, the soccer players were significantly less mature than the rest of the groups, while in the adolescents, the controls were the least skeletally mature. Summary and Conclusions: In summary, radial and tibial SOS are enhanced by the unique loading pattern in each sport (i.e, upper and lower extremities in gymnastics, lower extremities in soccer), with no cumulative effect between childhood and adolescence. That is, the effect of sport participation on bone SOS was apparent already among the young athletes. Enhanced bone properties among athletes of specific sports suggest that participation in these sports can improve bone strength and potential bone health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Introduction The purpose of this study was to assess specific osteoporosis-related health behaviours and physiological outcomes including daily calcium intake, physical activity levels, bone strength, as assessed by quantitative ultrasound, and bone turnover among women between the ages of 18 and 25. Respective differences on relevant study variables, based on dietary restraint and oral contraceptive use were also examined. Methods One hundred women (20.6 ± 0.2 years of age) volunteered to participate in the study. Informed written consent was obtained by all subjects prior to participation. The study and all related procedures were approved by the Brock University Research Ethics Board. Body mass, height, relative body fat, as well as chest, waist and hip circumferences were measured using standard procedures. The 10-item restrained eating subscale of the Dutch Eating Behaviour Questionnaire (DEBQ) was used to assess dietary restraint (van Strien et al., 1986). Daily calcium intake was assessed by the Rapid Assessment Method (RAM) (Hertzler & Frary 1994). Weekly physical activity was documented by the 4-item Godin Leisure-Time Exercise Questionnaire (Godin & Shephard 1985). Bone strength was determined from the speed of sound (SOS) as measured by QUS (Sunlight 7000S). SOS measurements (m/s) were taken of the dominant and non-dominant sides of the distal one third of the radius and the mid-shaft of the tibia. Resting blood samples were collected from all subjects between 9am and 12pm, in order to evaluate the impact of lifestyle factors on biochemical markers of bone turnover. Blood was collected during the early follicular phase of the menstrual cycle (approximately days 1-5) for all subjects. Samples were centrifliged and the serum or plasma was aliquoted into separate tubes and stored at -80°C until analysis. The bone formation markers measured were Osteocalcin (OC), bone specific alkaline phosphatase (BAP) and 25-OH vitamin D. The bone resorption markers measured were the carboxy (CTx) and amino (NTx) terminal telopeptides of type-I collagen crosslinks. All markers were assessed by ELISA. Subjects were divided into high (HDR) and low dietary restrainers (LDR) based on the median DEBQ score, and also into users (BC) and non-users (nBC) of oral contraceptives. A series of multiple one way ANOVA's were then conducted to identify differences between each set of groups for all relevant variables. A two-way ANOVA analysis was used to explore significant interactions between dietary restraint and use of oral contraceptives while a univariate follow-up analysis was also performed when appropriate. Pearson Product Moment Correlations were used to determine relationships among study variables. Results HDR had significantly higher BMI, %BF and circumference measures but lower daily calcium intake than LDR. There were no significant differences in physical activity levels between HDR and LDR. No significant differences were found between BC and nBC in body composition, calcium intake and physical activity. HDR had significantly lower tibial SOS scores than LDR in both the dominant and non-dominant sites. The post-hoc analysis showed that within the non-birth control group, the HDR had significantly lower tibial SOS scores of bone strength when compared to the LDR but Aere were no significant differences found between the two dietary restraint groups for those currently on birth control. HDR had significantly lower levels of OC than LDR and the BC group had lower levels of BAP than the nBC group. Consistently, the follow-up analysis revealed that within those not on birth control, subjects who were classified as HDR had significantly (f*<0.05) lower levels of OC when compared with LDR but no significant differences were observed in bone turnover between the two dietary restraint groups for those currently on birth control. Physical activity was not correlated with SOS scores and bone turnover markers possibly due to the low physical activity variability in this group of women. Conclusion This is the first study to examine the effects of dietary restraint on bone strength and turnover among this population of women. The most important finding of this study was that bone strength and turnover are negatively influenced by dietary restraint independent of relative body fat. In general, the results of the present thesis suggest that dietary restraint, oral contraceptive use, as well as low daily calcium intake and low physical activity levels were widespread behaviours among this population of college-aged women. The young women who were using dietary restraint as a strategy to lose weight, and thus were in the HDR group, despite their higher relative body fat and weight, had lower scores of bone strength and lower levels of markers of bone turnover compared to the low dietary restrainers. Additionally, bone turnover seemed to be negatively affected by oral contraceptives, while bone strength, as assessed by QUS, seemed unaffected by their use in this population of young women. Physical activity (weekly energy expenditure), on the other hand, was not associated with either bone strength or bone tiimover possibly due to the low variability of this variable in this population of young Canadian women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to compare bone speed of sound (SOS) measured by quantitative ultrasound, circulating levels of IGF- 1 and biochemical markers of bone turnover in pre- (Pr) and post-menarcheal (Po) synchronized swimmers (SS) and controls (NS). Seventy participants were recruited: 8 PrSS, 22 PoSS, 20 PrNS, and 20 PoNS. Anthropometric measures of height, weight, skeletal maturity and percent body fat were taken, and dietary intake evaluated using 24-hour recall. Bone SOS was measured at the distal radius and mid-tibia and blood samples analyzed for IGF-1, osteocalcin, NTx, and 25-OH vitamin D. Results demonstrated maturational effects on bone SOS, IGF-1 and bone turnover (p<0.05), with no differences observed between SS and NS. Main effects were observed for a reduced caloric intake in SS compared to NS (p<0.05). Therefore, SS does not offer additive affects on bone strength but imparts no adverse affects to skeletal health in these athletes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last two decades, the prevalence of obesity in the general population has been steadily increasing. Obesity is a major issue in scientific research because it is associated with many health problems, one of which is bone quality. In adult females, adiposity is associated with increased bone mineral density, suggesting that there is a protective effect of fat on bone. However, the association between adiposity and bone strength during childhood is not clear. Thus, the purpose of this study was to compare bone strength, as reflected by speed of sound (SOS), of overweight and obese girls and adolescents with normal-weight age-matched controls. Data from 75 females included normal-weight girls (G-NW; body fat:::; 25%; n = 21), overweight and obese girls (GOW; body fat ~ 28%; n = 19), normal-weight adolescents (A-NW, body fat:::; 25%; n = 13) and overweight and obese adolescents (A-OW; body fat ~ 28%; n = 22). Nutrition was assessed with a 24-hour recall questionnaire and habitual physical activity was measured for one week using accelerometry. Using quantitative ultrasound (QUS; Sunlight Omnisense™), bone SOS was measured at the distal radius and mid-tibia. No differences were found between groups in daily total energy, calcium or vitamin D intake. However, all groups were below the recommended daily calcium intake of 1300 mg (Osteoporosis Canada, 2008). Adolescents were significantly less active than girls (14.7 ± 0.6 vs. 6.3 ± 0.6% active for G and A, respectively). OW accumulated significantly less minutes of moderate-to-very vigorous physical activity per day (MVPA) than NW in both age groups (114 ± 6 vs. 57 ± 5 min/day for NW and OW, i respectively). Girls had significantly lower radial SOS (3794 ± 87 vs. 3964 ± 64 mls for G-NW and A-NW, respectively), and tibial SOS (3678 ± 86 vs. 3878 ± 52 mls for G-NW and A-NW, respectively) than adolescents. Radial SOS was similar in the two adiposity groups within each age group. However, tibial SOS was lower in the two overweight groups (3601 ± 75 mls vs. 3739 ± 134 mls for G-OW and A-OW, respectively) compared with the age-matched normal-weight controls. Body fat percentage negatively correlated with tibial SOS in the study sample as a whole (r = -0.30). However, when split into groups, percent bo~y fat correlated with tibial SOS only in the A-OW group (r = -0.53). MVPA correlated with tibial SOS (r = 0.40), once age was partialed out. In conclusion, in contrast withthe higher bone strength characteristic of obese adult women, overweight and obese girls and adolescents are characterized by low tibial bone strength, as assessed with QUS. The differences between adiposity groups in tibial SOS may be at least partially due to the reduced weight-bearing physical activity levels in the overweight girls and adolescents. However, other factors, such as hormonal influences associated with high body fat may also playa role in reducing bone strength in overweight girls. Further research is required to reveal the mechanisms causing low bone strength in overweight and obese children and adolescents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to examine the associations between bone speed of sound (SOS) and body composition, osteoporosis-related health behaviours, and socioeconomic status (SES) in adolescent females. A total of 442 adolescent females in grades 9-11 participated. Anthropometric measures of height, body mass, and percent body fat were taken, and osteo-protective behaviours such as oral contraceptive use (OC), physical activity and daily calcium intake were evaluated using self-report questionnaires. Bone SOS was measured by transaxial quantitative ultrasound (QUS) at the distal radius and mid-tibia. The results suggest that fat mass is a significant negative predictor of tibial SOS, while lean mass is positively associated with radial SOS scores and calcium intake was positively associated with tibial SOS scores (pbone SOS. Therefore bone strength measured by QUS is reduced in adolescents with an increased fat mass, and influenced positively by OC use, calcium intake and lean mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the association between socioeconomic status (SES), school attended and bone health measured by bone speed of sound (SOS) among adolescent females in Canada. 412 participants from six randomly selected schools in Southern Ontario were examined. Bone SOS was measured by quantitative ultrasound. Participant’s school and aggregate area-based census-derived (AABCD) SES were evaluated as predictors. Mean participant age was 15.7 (SD 1.0) years. Average median family income was $68,162 (SD $19,366). Median family income was non-linearly associated with bone SOS and restricted cubic splines described the relationship. Univariate regression, accounting for clustering of participants in schools, revealed a significant non-linear association between AABCD-median family income and non-dominant tibial SOS (LRT p = 0.031). Multivariable regression revealed school to have a significant impact (LRT p = 0.0001). High schools had a strong influence on the bone health of female students and this effect overrode the effect of SES.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the bone mineral content (BMC) in young women with Adolescent Idiopathic Scoliosis (AIS), treated with a brace (27.9 ±21.6 months, for 18.0±5.4 h/d) during adolescence (AIS-B, n = 15, 25.6 ±5.8 yrs), versus women with AIS but no treatment (AIS-NB, n = 15, 24.0 ±4.0 yrs), and women without AIS (C, n = 19, 23.5 ±3.8 yrs). After controlling for lean body mass, calcium and vitamin D daily intake, and strenuous physical activity, femoral neck BMC was lower in the AIS-B compared with AIS-NB and C (all p’s < .05). In summary, women with AIS, braced during their growing years are characterized by low lower limb BMC. However, the lack of a relationship between brace treatment duration and BMC, suggests that bracing was not the likely mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-impact, high-intensity interval exercise (HIE) bout was used to determine whether an association exists between cytokines and bone turnover markers following an acute bout of exercise. Twenty-three recreationally active males (21.8±2.4yr) performed a single HIE bout on a cycle ergometer at 90% relative intensity. Venous blood samples were collected prior to exercise, 5-minutes, 1-hour, and 24-hours post-exercise, and were analyzed for serum levels of pro-inflammatory (IL-6, IL-1α, IL-1β, and TNF-α) and anti- inflammatory cytokines (IL-10) and markers of bone formation (BAP, OPG) and resorption (NTX, RANKL). Significant effects were observed with all bone markers, especially 5-minutes post-exercise with BAP, OPG, and RANKL increasing from baseline (p<0.05). Significant effects were also observed for IL-1α, IL-1β, IL-6, and TNF-α (p<0.00, p=0.04, p=0.03, p<0.00). In addition, post-exercise changes in NTX, BAP, and OPG were significantly correlated pro- and anti-inflammatory cytokines, suggesting that an interaction exists between the immune and skeletal response to exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study objective was to compare the response of bone markers to an exercise session consisting of high mechanical loading (144 jumps) between boys (n=12, 10.2 ± 0.4 years) and men (n=18, 22.5 ± 0.7 years). Blood samples were collected at pre-, 5, 60 minutes post-, and 24 hours post-exercise) to measure bone-specific alkaline phosphatase (BAP), amino-terminal cross-linking telopeptide (NTx), osteoprotegrin (OPG) and receptor activator of nuclear factor kb ligand (RANKL). Boys had higher BAP levels at all time points, with an increase 24 hours post-exercise. No such increase was observed in men. Likewise, NTx levels were higher in boys, with a greater increase over time than in men. OPG and RANKL levels were similar in boys and men at all times. In summary, even one session of exercise stimulates bone turnover, as reflected in the increase in both BAP and NTx, in boys (but not men) within 24 hours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct high fat (HF) feeding has adverse effects on body composition and bone development in rodents. However, it is unclear whether maternal HF feeding has similar effects in male rat offspring. The objectives of this thesis were to determine if maternal HF feeding altered body composition, plasma hormones, bone development, and bone fatty acid composition in male offspring at weaning and 3 months of age. Maternal HF feeding increased bone mass and altered femur fatty acid composition at weaning, without differences in fat mass, lean mass, plasma hormones, or bone mass (femur or lumbar vertebrae). However, early differences did not persist at 3 months of age or contribute to lower bone strength – following consumption of a control diet post-weaning. These findings suggest that maternal HF feeding can alter body composition and bone development in weanling male offspring, without long-lasting effects if a healthy control diet is consumed post-weaning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High fat diet (HFD) consumption in rodents alters body composition and weakens bones. Whether female offspring of mothers consuming a HFD are similarly affected at weaning and early adulthood is unclear. This research determined whether maternal HFD contributes to long-lasting alterations in body composition and bone health of female offspring. Rats were fed control or HFD for 10 weeks prior to and throughout pregnancy and lactation. Female offspring were studied at weaning or 3 months of age (consumed control diet). Main findings in female offspring: maternal HFD decreased lean mass, increased fat mass and femoral BMD at weaning, but not at 3 months; weanling femoral lipid composition reflected maternal diet, persisting to 3 months of age (decreased total and n6 polyunsaturates, increased saturates); and no differences in femoral strength at 3 months. In summary, 3 month old female offspring have similar body composition and bone health regardless of maternal diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to isoflavones (ISO), abundant in soy protein infant formula, for the first 5 days of life results in higher bone mineral density (BMD),greater trabecular connectivity and higher fracture load of lumbar vertebrae (LV) at adulthood. The effect of lengthening the duration of exposure to ISO on bone development has not been studied. This study determined if providing ISO for the first 21 days of life, which more closely mimics the duration that infants are fed soy protein formula, results in higher BMD, improved bone structure and greater strength in femurs and LV than a 5-day protocol. Female CD-1 mice were randomized to subcutaneous injections of ISO (7 Q1 mg kg/body weight/day) or corn oil from postnatal day 1 to 21. BMD, structure and strength were measured at the femur and LV at 4 months of age, representing young Q2 adulthood. At the LV, exposure to ISO resulted in higher (P,0.05) BMD, trabecular connectivity and fracture load compared with control (CON). Exposure to ISO also resulted in higher (P,0.05) whole femur BMD, higher (P,0.05) bone volume/total volume and Q3 lower (P,0.05) trabecular separation at the femur neck, as well as greater (P,0.05) fracture load at femur midpoint and femur neck compared with the CON group. Exposure to ISO throughout suckling has favorable effects on LV outcomes, and, unlike previous studies using 5-day exposure to ISO, femur outcomes are also improved. Duration of exposure should be considered when using the CD-1 mouse to model the effect of early life exposure of infants to ISO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ovariectomized (OVX) rat, a preclinical model for studying postmenopausal bone loss, may also be used to study differences in alveolar bone (AB). The objectives of this study were to quantify the differences in AB following estrogen replacement therapy (ERT), and to investigate the relationship between AB structure and density, and trabecular bone at the femoral neck (FN) and third lumbar vertebral body (LB3). Estrogen treated rats had a higher bone volume fraction (BV/TV) at the AB region (9.8% P < 0.0001), FN (12% P < 0.0001), and LB3 (11.5% P < 0.0001) compared to the OVX group. BV/TV of the AB was positively correlated with the BV/TV at the FN (r = 0.69 P < 0.0001) and the LB3 (r = 0.75 P < 0.0001). The trabecular number (Tb.N), trabecular separation (Tb.Sp), and structure model index (SMI) were also positively correlated (P < 0.05) between the AB and FN (r = 0.42, 0.49, and 0.73, respectfully) and between the AB and LB3 (r = 0.44, 0.63, and 0.69, respectfully). Given the capacity of AB to respond to ERT, future preclinical drug/nutritional intervention studies aimed at improving skeletal health should include the AB as a region of interest (ROI).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

cell of origin and triggering events for leukaemia are mostly unknown. Here we show that the bone marrow contains a progenitor that expresses renin throughout development and possesses a B-lymphocyte pedigree. This cell requires RBP-J to differentiate. Deletion of RBP-J in these renin-expressing progenitors enriches the precursor B-cell gene programme and constrains lymphocyte differentiation, facilitated by H3K4me3 activating marks in genes that control the pre-B stage. Mutant cells undergo neoplastic transformation, and mice develop a highly penetrant B-cell leukaemia with multi-organ infiltration and early death. These reninexpressing cells appear uniquely vulnerable as other conditional models of RBP-J deletion do not result in leukaemia. The discovery of these unique renin progenitors in the bone marrow and the model of leukaemia described herein may enhance our understanding of normal and neoplastic haematopoiesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Adolescent idiopathic scoliosis (AIS) is often associated with low bone mineral content and density (BMC, BMD). Bracing, used to manage spine curvature, may interfere with the growth-related BMC accrual, resulting in reduced bone strength into adulthood. The purpose of this study was to assess the effects of brace treatment on BMC in adult women, diagnosed with AIS and braced in early adolescence. Methods: Participants included women with AIS who: (i) underwent brace treatment (AIS-B, n = 15, 25.6 ± 5.8 yrs), (ii) underwent no treatment (AIS, n = 15, 24.0 ± 4.0 yrs), and (iii) a healthy comparison group (CON, n = 19, 23.5 ± 3.8 yrs). BMC and body composition were assessed using dual-energy X-ray absorptiometry. Differences between groups were examined using a oneway ANOVA or ANCOVA, as appropriate. Results: AIS-B underwent brace treatment 27.9 ± 21.6 months, for 18.0 ± 5.4 h/d. Femoral neck BMC was lower (p = 0.06) in AIS-B (4.54 ± 0.10 g) compared with AIS (4.89 ± 0.61 g) and CON (5.07 ± 0.58 g). Controlling for lean body mass, calcium and vitamin D daily intake, and strenuous physical activity, femoral neck BMC was statistically different (p = 0.02) between groups. A similar pattern was observed at other lower extremity sites (p < 0.05), but not in the spine or upper extremities. BMC and BMD did not correlate with duration of brace treatment, duration of daily brace wear, or overall physical activity. Conclusion: Young women with AIS, especially those who were treated with a brace, have significantly lower BMC in their lower limbs compared to women without AIS. However, the lack of a relationship between brace treatment duration during adolescence and BMC during young adulthood, suggests that the brace treatment is not the likely mechanism of the low BMC.