3 resultados para humoral encapsulation

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biotransformation of water insoluble substrates by mammalian and bacterial cells has been problematic, since these whole cell reactions are primarily performed in an aqueous environment The implementation of a twophase or encapsulated system has the advantages of providing a low water system along with the physiological environment the cells require to sustain themselves. Encapsulation of mammalian cells by formation of polyamide capsules via interfacial polymerization illustrated that the cells could not survive this type of encapsulation process. Biotransformation of the steroid spironolactone [3] by human kidney carcinoma cells was performed in a substrate-encapsulated system, yielding canrenone [4] in 70% yield. Encapsulation of nitrile-metabolizing Rhodococcus rhodochrous cells using a polyamide membrane yielded leaky capsules, but biotransformation of 2-(4- chlorophenyl)-3-methylbutyronitrile (CPIN) [6] in a free cell system yielded CPIN amide [7] in 40% yield and 94% ee. A two-phase biotransformation of CPIN consisting of a 5:1 ratio of tris buffer, pH 7.2 to octane respectively, gave CPIN acid [8] in 30% yield and 97% ee. It was concluded that Rhodococcus rhodochrous ATCC 17895 contained a nonselective nitrile hydratase and a highly selective amidase enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the work reported here, optically clear, ultrathin TEOS derived sol-gel slides which were suitable for studies of tryptophan (Trp) fluorescence from entrapped proteins were prepared by the sol-gel technique and characterized. The monitoring of intrinsic protein fluorescence provided information about the structure and environment of the entrapped protein, and about the kinetics of the interaction between the entrapped protein and extemal reagents. Initial studies concentrated on the single Trp protein monellin which was entrapped into the sol-gel matrices. Two types of sol-gel slides, termed "wet aged", in which the gels were aged in buffer and "dry-aged", in which the gels were aged in air , were studied in order to compare the effect of the sol-gel matrix on the structure of the protein at different aging stages. Fluorescence results suggested that the mobility of solvent inside the slides was substantially reduced. The interaction of the entrapped protein with both neutral and charged species was examined and indicated response times on the order of minutes. In the case of the neutral species the kinetics were diffusion limited in solution, but were best described by a sum of first order rate constants when the reactions occurred in the glass matrix. For charged species, interactions between the analytes and the negatively charged glass matrix caused the reaction kinetics to become complex, with the overall reaction rate depending on both the type of aging and the charge on the analyte. The stability and conformational flexibility of the entrapped monellin were also studied. These studies indicated that the encapsulation of monellin into dry-aged monoliths caused the thermal unfolding transition to broaden and shift upward by 14°C, and causedthe long-term stability to improve by 12-fold (compared to solution). Chemical stability studies also showed a broader transition for the unfolding of the protein in dry-aged monoliths, and suggested that the protein was present in a distribution of environments. Results indicated that the entrapped proteins had a smaller range of conformational motions compared to proteins in solution, and that entrapped proteins were not able to unfold completely. The restriction of conformational motion, along with the increased structural order of the internal environment of the gels, likely resulted in the improvements in themial and long-term stability that were observed. A second protein which was also studied in this work is the metal binding protein rat oncomodulin. Initially, the unfolding behavior of this protein in aqueous solution was examined. Several single tryptophan mutants of the metal-binding protein rat oncomodulin (OM) were examined; F102W, Y57W, Y65W and the engineered protein CDOM33 which had all 12 residues of the CD loop replaced with a higher affinity binding loop. Both the thermal and the chemical stability were improved upon binding of metal ions with the order apo < Ca^^ < Tb^"^. During thermal denaturation, the transition midpoints (Tun) of Y65W appeared to be the lowest, followed by Y57W and F102W. The placement of the Trp residue in the F-helix in F102W apparently made the protein slightly more thermostable, although the fluorescence response was readily affected by chemical denaturants, which probably acted through the disruption of hydrogen bonds at the Cterminal end of the F-helix. Under both thermal and chemical denaturation, the engineered protein showed the highest stability. This indicated that increasing the number of metal ligating oxygens in the binding site, either by using a metal ion with a higher coordinatenumber (i.e. Tb^*) which binds more carboxylate ligands, or by providing more ligating groups, as in the CDOM33 replacement, produces notable improvements in protein stability. Y57W and CE)OM33 OM were chosen for further studies when encapsulated into sol-gel derived matrices. The kinetics of interaction of terbium with the entrapped proteins, the ability of the entrapped protein to binding terbium, as well as thermal stability of these two entrapped protein were compared with different levels of Ca^"*^ present in the matrix and in solution. Results suggested that for both of the proteins, the response time and the ability to bind terbium could be adjusted by adding excess calcium to the matrix before gelation. However, the less stable protein Y57W only retained at most 45% of its binding ability in solution while the more stable protein CDOM33 was able to retain 100% binding ability. Themially induced denaturation also suggested that CDOM33 showed similar stability to the protein in solution while Y57W was destabilized. All these results suggested that "hard" proteins (i.e. very stable) can easily survive the sol-gel encapsulation process, but "soft" proteins with lower thermodynamic stability may not be able to withstand the sol-gel process. However, it is possible to control many parameters in order to successfully entrap biological molecules into the sol-gel matrices with maxunum retention of activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant human adenovirus (Ad) vectors are being extensively explored for their use in gene therapy and recombinant vaccines. Ad vectors are attractive for many reasons, including the fact that (1) they are relatively safe, based on their use as live oral vaccines, (2) they can accept large transgene inserts, (3) they can infect dividing and postmitotic cells, and (4) they can be produced to high titers. However, there are also a number of major problems associated with Ad vectors, including transient foreign gene expression due to host cellular immune responses, problems with humoral immunity, and the creation of replication competent adenoviruses (RCA). Most Ad vectors contain deletions in the E1 region that allow for insertion of a transgene. However, the E1 gene products are required for replication and thus must be supplied in trans by a helper ceillille that will allow for the growth and packaging of the defective virus. For this purpose the 293 cell line (Graham et al., 1977) is used most often; however, homologous recombination between the vector and the cell line often results in the generation of RCA. The presence of RCA in batches of adenoviral vectors for clinical use is a safety risk because tlley . may result in the mobilization and spread of the replication-defective vector viruses, and in significant tissue damage and pathogenicity. The present research focused on the alteration of the 293 cell line such that RCA formation can be eliminated. The strategy to modify the 293 cells involved the removal of the first 380 bp of the adenovirus genome through the process of homologous recombination. The first step towards this goal involved identifying and cloning the left-end cellular-viral jUl1ction from 293 cells to assemble sequences required for homologous recombination. Polymerase chain reaction (PCR) was performed to clone the junction, and the clone was verified through sequencing. The plasn1id PAM2 was then constructed, which served as the targeting cassette used to modify the 293 cells. The cassette consisted of (1) the cellular-viral junction as the left-end region of homology, (2) the neo gene to use for positive selection upon tranfection into 293 cells, (3) the adenoviral genome from bp 380 to bp 3438 as the right-end region of homology, and (4) the HSV-tk gene to use for negative selection. The plasmid PAM2 was linearized to produce a double strand break outside the region of homology, and transfected into 293 cells using the calcium-phosphate technique. Cells were first selected for their resistance to the drug G418, and subsequently for their resistance to the drug Gancyclovir (GANC). From 17 transfections, 100 pools of G418f and GANCf cells were picked using cloning lings and expanded for screening. Genomic DNA was isolated from the pools and screened for the presence of the 380 bps using PCR. Ten of the most promising pools were diluted to single cells and expanded in order to isolate homogeneous cell lines. From these, an additional 100 G41Sf and GANef foci were screened. These preliminary screening results appear promising for the detection of the desired cell line. Future work would include further cloning and purification of the promising cell lines that have potentially undergone homologous recombination, in order to isolate a homogeneous cell line of interest.