4 resultados para habitat fragmentation

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

How does fire affect the plant and animal community of the boreal forest? This study attempted to examine the changes in plant composition and productivity, and small mammal demography brought about by fire in the northern boreal environment at Chick Lake, N.W.T. (65053fN, 128°14,W). Two 5*6 ha plots measuring 375m x 150m were selected for study during the summers of 1973 and 197^. One had been unburned for 120 years, the other was part of a fire which burned in the spring of 1969. Grids of 15m x 15m were established in each plot and meter square quadrats taken at each of the 250 grid intersections in order to determine plant composition and density. Aerial primary production was assessed by clipping and drying 80 samples of terminal new production for each species under investigation. Small mammal populations were sampled by placing a Sherman live trap at each grid intersection for ten days in every month. The two plots were similar in plant species composition which suggested that most regrowth in the burned area was from rootstocks which survived the fire. The plant data were submitted to a cluster analysis that revealed nine separate species associations, six of which occured in the burned area and eight of which occured in the control. These were subsequently treated as habitats for purposes of comparison with small mammal distributions. The burned area showed a greater productivity in flowers and fruits although total productivity in the control area was higher due to a large contribution from the non-vascular component. Maximum aerial productivity as dry wieght was measured at 157.1 g/m and 207.8 g/m for the burn and control respectively. Microtus pennsylvanicus and Clethrionomys rutilus were the two most common small mammals encountered; Microtus xanthognathus, Synaptomys borealis, and Phenacomys intermedius also occured in the area. Populations of M. pennsylvanicus and C. rutilus were high during the summer of 1973; however, M. pennsylvanicus was rare on the control but abundant on the burn, while C. rutilus was rare on the burn but abundant in the control. During the summer of 197^ populations declined, with the result that few voles of any species were caught in the burn while equal numbers of the two species were caught in the control. During the summer of 1973 M. pennsylvanicus showed a positive association to the most productive habitat type in the burn which was avoided by C. rutilus. In the control £• rutilus showed a similar positive association to the most productive habitat type which was avoided by M. pennsylvanicus. In all cases for the high population year of 1973# the two species never overlapped in habitat preference. When populations declined in 197^f "both species showed a strong association for the most productive habitat in the control. This would suggest that during a high population year, an abundant species can exclude competitors from a chosen habitat, but that this dominance decreases as population levels decrease. It is possible that M. pennsylvanicus is a more efficient competitor in a recently burned environment, while C. rutilus assumes this role once non-vascular regrowth becomes extensive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been well documented, within the field of landscape ecology, that terrestrial fragmentation contributes to increased heterogeneity at the landscape level. It has also been observed that elevated areas of edge habitat occur within fragmented landscapes. Spatial and temporal edge effects were investigated in four areas designated as Nature Reserve Zones within Short Hills Provincial Park, near St. Catharines, Ontario. Random sampling along exposed edges was performed on trees and saplings, at 5 and 25 ill edge depths, using the point-centred quarter method. Diameter at breast height (dbh) and distance from point measurements were used to establish relative density, dominance, frequency and importance value. One-way analyses of variance were used on dbh measurements of tree species and Chi-Square contingency tables were used on size class distributions of saplings species to determine significant differences between 5 and 25 metres. Qualitative comparisons of importance values were also used to determine differences between 5 and 25 metres as well as between trees and saplings. These statistical and qualitative comparisons suggest that a significant overall spatial edge effect is currently exhibited by fragmented wooded islands within the park. The major species of the park, Acersaccharuln, may be exhibiting a temporal edge effect. The heterogeneous nature of the park may be of importance in understanding this area as a complex, ecological system. It is possible that the remaining forest tracts of the park have been affected, and continue to be affected by previous disturbances. Based on these findings, recommendations are made to the Ontario Ministry of Natural Resources concerning the management of Short Hills Provincial Park in accordance with their 1990 proposed Management Plan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resurgence of malaria in highland regions of Africa, Oceania and recently in South America underlines the importance of the study of the ecology of highland mosquito vectors of malaria. Since the incidence of malaria is limited by the distribution of its vectors, the purpose of this PhD thesis was to examine aspects of the ecology of Anopheles mosquitoes in the Andes of Ecuador, South America. A historical literature and archival data review (Chapter 2) indicated that Anopheles pseudopunctipennis transmitted malaria in highland valleys of Ecuador prior to 1950, although it was eliminated through habitat removal and the use of chemical insecticides. Other anopheline species were previously limited to low-altitude regions, except in a few unconfirmed cases. A thorough larval collection effort (n=438 attempted collection sites) in all road-accessible parts of Ecuador except for the lowland Amazon basin was undertaken between 2008 - 2010 (Chapter 3). Larvae were identified morphologically and using molecular techniques (mitochondrial COl gene), and distribution maps indicated that all five species collected (Anopheles albimanus, An. pseudopunctipennis, Anopheles punctimacula, Anopheles oswaldoi s.l. and Anopheles eiseni) were more widespread throughout highland regions than previously recorded during the 1940s, with higher maximum altitudes for all except An. pseudopunctipennis (1541 m, 1930 m, 1906 m, 1233 m and 1873 m, respectively). During larval collections, to characterize species-specific larval habitat, a variety of abiotic and biotic habitat parameters were measured and compared between species-present and species-absent sites using chi-square tests and stepwise binary logistic regression analyses (Chapter 4). An. albimanus was significantly associated with permanent pools with sand substrates and An. pseudopunctipennis with gravel and boulder substrates. Both species were significantly associated with floating cyanobacterial mats and warmer temperatures, which may limit their presence in cooler highland regions. Anopheles punctimacula was collected more often than expected from algae-free, shaded pools with higher-than-average calculated dissolved oxygen. Anopheles oswaldoi s.l., the species occurring on the Amazonian side of the Andes, was associated with permanent, anthropogenic habitats such as roadside ditches and ponds. To address the hypothesis that human land use change is responsible for the emergence of multiple highland Anopheles species by creating larval habitat, common land uses in the western Andes were surveyed for standing water and potential larval habitat suitability (Chapter 5). Rivers and road edges provided large amounts of potentially suitable anopheline habitat in the western Andes, while cattle pasture also created potentially suitable habitat in irrigation canals and watering ponds. Other common land uses surveyed (banana farms, sugarcane plantations, mixed tree plantations, and empty lots) were usually established on steep slopes and had very little standing water present. Using distribution and larval habitat data, a GIS-based larval habitat distribution model for the common western species was constructed in ArcGIS v.l 0 (ESRI 2010) using derived data layers from field measurements and other sources (Chapter 6). The additive model predicted 76.4 - 97.9% of the field-observed collection localities of An. albimanus, An. pseudopunctipennis and An. punctimacula, although it could not accurately distinguish between species-absent and speciespresent sites due to its coarse scale. The model predicted distributional expansion and/or shift of one or more anopheline species into the following highland valleys with climate warming: Mira/Chota, Imbabura province, Tumbaco, Pichincha province, Pallatanga and Sibambe, Chimborazo province, and Yungilla, Azuay province. These valleys may serve as targeted sites of future monitoring to prevent highland epidemics of malaria. The human perceptions of malaria and mosquitoes in relation to land management practices were assessed through an interview-based survey (n=262) in both highlands and lowlands, of male and female land owners and managers of five property types (Chapter 7). Although respondents had a strong understanding of where the disease occurs in their own country and of the basic relationship among standing water, mosquitoes and malaria, about half of respondents in potential risk areas denied the current possibility of malaria infection on their own property. As well, about half of respondents with potential anopheline larval habitat did not report its presence, likely due to a highly specific definition of suitable mosquito habitat. Most respondents who are considered at risk of malaria currently use at least one type of mosquito bite prevention, most commonly bed nets. In conclusion, this interdisciplinary thesis examines the occurrence of Anopheles species in the lowland transition area and highlands in Ecuador, from a historic, geographic, ecological and sociological perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larval habitat for three highland Anopheles species: Anopheles albimanus Wiedemann, Anopheles pseudopunctipennis Theobald, and Anopheles punctimacula Dyar and Knab was related to human land uses, rivers, roads, and remotely sensed land cover classifications in the western Ecuadorian Andes. Of the five commonly observed human land uses, cattle pasture (n = 30) provided potentially suitable habitat for A. punctimacula and A. albimanus in less than 14% of sites, and was related in a principal components analysis (PCA) to the presence of macrophyte vegetation, greater surface area, clarity, and algae cover. Empty lots (n = 30) were related in the PCA to incident sunlight and provided potential habitat for A. pseudopunctipennis and A. albimanus in less than 14% of sites. The other land uses surveyed (banana, sugarcane, and mixed tree plantations; n = 28, 21, 25, respectively) provided very little standing water that could potentially be used for larval habitat. River edges and eddies (n = 41) were associated with greater clarity, depth, temperature, and algae cover, which provide potentially suitable habitat for A. albimanus in 58% of sites and A. pseudopunctipennis in 29% of sites. Road-associated water bodies (n = 38) provided potential habitat for A. punctimacula in 44% of sites and A. albimanus in 26% of sites surveyed. Species collection localities were compared to land cover classifications using Geographic Information Systems software. All three mosquito species were associated more often with the category “closed/open broadleaved evergreen and/or semi-deciduous forests” than expected (P ≤ 0.01 in all cases), given such a habitat’s abundance. This study provides evidence that specific human land uses create habitat for potential malaria vectors in highland regions of the Andes.