1 resultado para grid, clustering, statistical, clustering
em Brock University, Canada
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (3)
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (46)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (33)
- Boston University Digital Common (8)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (44)
- CentAUR: Central Archive University of Reading - UK (56)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (15)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (4)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (4)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (7)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (68)
- Instituto Gulbenkian de Ciência (2)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (15)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (13)
- Nottingham eTheses (2)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (11)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (56)
- Queensland University of Technology - ePrints Archive (109)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (48)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (27)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (10)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (8)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (3)
- University of Queensland eSpace - Australia (19)
- University of Washington (3)
- WestminsterResearch - UK (2)
Resumo:
The goal of most clustering algorithms is to find the optimal number of clusters (i.e. fewest number of clusters). However, analysis of molecular conformations of biological macromolecules obtained from computer simulations may benefit from a larger array of clusters. The Self-Organizing Map (SOM) clustering method has the advantage of generating large numbers of clusters, but often gives ambiguous results. In this work, SOMs have been shown to be reproducible when the same conformational dataset is independently clustered multiple times (~100), with the help of the Cramérs V-index (C_v). The ability of C_v to determine which SOMs are reproduced is generalizable across different SOM source codes. The conformational ensembles produced from MD (molecular dynamics) and REMD (replica exchange molecular dynamics) simulations of the penta peptide Met-enkephalin (MET) and the 34 amino acid protein human Parathyroid Hormone (hPTH) were used to evaluate SOM reproducibility. The training length for the SOM has a huge impact on the reproducibility. Analysis of MET conformational data definitively determined that toroidal SOMs cluster data better than bordered maps due to the fact that toroidal maps do not have an edge effect. For the source code from MATLAB, it was determined that the learning rate function should be LINEAR with an initial learning rate factor of 0.05 and the SOM should be trained by a sequential algorithm. The trained SOMs can be used as a supervised classification for another dataset. The toroidal 10×10 hexagonal SOMs produced from the MATLAB program for hPTH conformational data produced three sets of reproducible clusters (27%, 15%, and 13% of 100 independent runs) which find similar partitionings to those of smaller 6×6 SOMs. The χ^2 values produced as part of the C_v calculation were used to locate clusters with identical conformational memberships on independently trained SOMs, even those with different dimensions. The χ^2 values could relate the different SOM partitionings to each other.