4 resultados para google
em Brock University, Canada
Resumo:
This study examines the efficiency of search engine advertising strategies employed by firms. The research setting is the online retailing industry, which is characterized by extensive use of Web technologies and high competition for market share and profitability. For Internet retailers, search engines are increasingly serving as an information gateway for many decision-making tasks. In particular, Search engine advertising (SEA) has opened a new marketing channel for retailers to attract new customers and improve their performance. In addition to natural (organic) search marketing strategies, search engine advertisers compete for top advertisement slots provided by search brokers such as Google and Yahoo! through keyword auctions. The rationale being that greater visibility on a search engine during a keyword search will capture customers' interest in a business and its product or service offerings. Search engines account for most online activities today. Compared with the slow growth of traditional marketing channels, online search volumes continue to grow at a steady rate. According to the Search Engine Marketing Professional Organization, spending on search engine marketing by North American firms in 2008 was estimated at $13.5 billion. Despite the significant role SEA plays in Web retailing, scholarly research on the topic is limited. Prior studies in SEA have focused on search engine auction mechanism design. In contrast, research on the business value of SEA has been limited by the lack of empirical data on search advertising practices. Recent advances in search and retail technologies have created datarich environments that enable new research opportunities at the interface of marketing and information technology. This research uses extensive data from Web retailing and Google-based search advertising and evaluates Web retailers' use of resources, search advertising techniques, and other relevant factors that contribute to business performance across different metrics. The methods used include Data Envelopment Analysis (DEA), data mining, and multivariate statistics. This research contributes to empirical research by analyzing several Web retail firms in different industry sectors and product categories. One of the key findings is that the dynamics of sponsored search advertising vary between multi-channel and Web-only retailers. While the key performance metrics for multi-channel retailers include measures such as online sales, conversion rate (CR), c1ick-through-rate (CTR), and impressions, the key performance metrics for Web-only retailers focus on organic and sponsored ad ranks. These results provide a useful contribution to our organizational level understanding of search engine advertising strategies, both for multi-channel and Web-only retailers. These results also contribute to current knowledge in technology-driven marketing strategies and provide managers with a better understanding of sponsored search advertising and its impact on various performance metrics in Web retailing.
Resumo:
This work consists of a theoretical part and an experimental one. The first part provides a simple treatment of the celebrated von Neumann minimax theorem as formulated by Nikaid6 and Sion. It also discusses its relationships with fundamental theorems of convex analysis. The second part is about externality in sponsored search auctions. It shows that in these auctions, advertisers have externality effects on each other which influence their bidding behavior. It proposes Hal R.Varian model and shows how adding externality to this model will affect its properties. In order to have a better understanding of the interaction among advertisers in on-line auctions, it studies the structure of the Google advertisements networ.k and shows that it is a small-world scale-free network.
Resumo:
Complex networks have recently attracted a significant amount of research attention due to their ability to model real world phenomena. One important problem often encountered is to limit diffusive processes spread over the network, for example mitigating pandemic disease or computer virus spread. A number of problem formulations have been proposed that aim to solve such problems based on desired network characteristics, such as maintaining the largest network component after node removal. The recently formulated critical node detection problem aims to remove a small subset of vertices from the network such that the residual network has minimum pairwise connectivity. Unfortunately, the problem is NP-hard and also the number of constraints is cubic in number of vertices, making very large scale problems impossible to solve with traditional mathematical programming techniques. Even many approximation algorithm strategies such as dynamic programming, evolutionary algorithms, etc. all are unusable for networks that contain thousands to millions of vertices. A computationally efficient and simple approach is required in such circumstances, but none currently exist. In this thesis, such an algorithm is proposed. The methodology is based on a depth-first search traversal of the network, and a specially designed ranking function that considers information local to each vertex. Due to the variety of network structures, a number of characteristics must be taken into consideration and combined into a single rank that measures the utility of removing each vertex. Since removing a vertex in sequential fashion impacts the network structure, an efficient post-processing algorithm is also proposed to quickly re-rank vertices. Experiments on a range of common complex network models with varying number of vertices are considered, in addition to real world networks. The proposed algorithm, DFSH, is shown to be highly competitive and often outperforms existing strategies such as Google PageRank for minimizing pairwise connectivity.
Resumo:
In this thesis we study the properties of two large dynamic networks, the competition network of advertisers on the Google and Bing search engines and the dynamic network of friend relationships among avatars in the massively multiplayer online game (MMOG) Planetside 2. We are particularly interested in removal patterns in these networks. Our main finding is that in both of these networks the nodes which are most commonly removed are minor near isolated nodes. We also investigate the process of merging of two large networks using data captured during the merger of servers of Planetside 2. We found that the original network structures do not really merge but rather they get gradually replaced by newcomers not associated with the original structures. In the final part of the thesis we investigate the concept of motifs in the Barabási-Albert random graph. We establish some bounds on the number of motifs in this graph.