2 resultados para functional differential equation
em Brock University, Canada
Resumo:
Research indicates that Obsessive-Compulsive Disorder (OCD; DSM-IV-TR, American Psychiatric Association, 2000) is the second most frequent disorder to coincide with Autism Spectrum Disorder (ASD; Leyfer et aI., 2006). Excessive collecting and hoarding are also frequently reported in children with ASD (Berjerot, 2007). Although functional analysis (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) has successfully identified maintaining variables for repetitive behaviours such as of bizarre vocalizations (e.g., Wilder, Masuda, O'Connor, & Baham, 2001), tics (e.g., Scotti, Schulman, & Hojnacki, 1994), and habit disorders (e.g., Woods & Miltenberger, 1996), extant literature ofOCD and functional analysis methodology is scarce (May et aI., 2008). The current studies utilized functional analysis methodology to identify the types of operant functions associated with the OCD-related hoarding behaviour of a child with ASD and examined the efficacy of function-based intervention. Results supported hypotheses of automatic and socially mediated positive reinforcement. A corresponding function-based treatment plan incorporated antecedent strategies and differential reinforcement (Deitz, 1977; Lindberg, Iwata, Kahng, and DeLeon, 1999; Reynolds, 1961). Reductions in problem behaviour were evidenced through use of a multiple baseline across behaviours design and maintained during two-month follow-up. Decreases in symptom severity were also discerned through subjective measures of treatment effectiveness.
Resumo:
It has been previously shown that octopus venoms contain novel tachykinin peptides that despite being isolated from an invertebrate, contain the motifs characteristic of vertebrate tachykinin peptides rather than being more like conventional invertebrate tachykinin peptides. Therefore, in this study we examined the effect of three variants of octopus venom tachykinin peptides on invertebrate and vertebrate tissues. While there were differential potencies between the three peptides, their relative effects were uniquely consistent between invertebrate and vertebrae tissue assays. The most potent form (OCT-TK-III) was not only the most anionically charged but also was the most structurally stable. These results not only reveal that the interaction of tachykinin peptides is more complex than previous structure–function theories envisioned, but also reinforce the fundamental premise that animal venoms are rich resources of novel bioactive molecules, which are useful investigational ligands and some of which may be useful as lead compounds for drug design and development.