9 resultados para fluorene-based molecule

em Brock University, Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two new families of building blocks have been prepared and fully characterized and their coordination chemistry exploited for the preparation of molecule-based magnetic materials. The first class of compounds were prepared by exploiting the chemistry of 3,3'-diamino-2,2'-bipyridine together with 2-pyridine carbonyl chloride or 2-pyridine aldehyde. Two new ligands, 2,2'-bipyridine-3,3'-[2-pyridinecarboxamide] (Li, 2.3) and N'-6/s(2-pyridylmethyl) [2,2'bipyridine]-3,3'-diimine (L2, 2.7), were prepared and characterized. For ligand L4, two copper(II) coordination compounds were isolated with stoichiometrics [Cu2(Li)(hfac)2] (2.4) and [Cu(Li)Cl2] (2.5). The molecular structures of both complexes were determined by X-ray crystallography. In both complexes the ligand is in the dianionic form and coordinates the divalent Cu(II) ions via one amido and two pyridine nitrogen donor atoms. In (2.4), the coordination geometry around both Cu11 ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hfac counterions. In (2.5), both Cu(II) ions adopt a (4+1) distorted square pyramidal geometry. One copper forms a longer apical bond to an adjacent carbonyl oxygen atom, whereas the second copper is chelated to a neighboring Cu-Cl chloride ion to afford chloride bridged linear [Cu2(Li)Cl2]2 tetramers that run along the c-axis of the unit cell. The magnetic susceptibility data for (2.4) reveal the occurrence of weak antiferromagnetic interactions between the copper(II) ions. In contrast, variable temperature magnetic susceptibility measurements for (2.5) reveal more complex magnetic properties with the presence of ferromagnetic exchange between the central dimeric pair of copper atoms and weak antiferromagnetic exchange between the outer pairs of copper atoms. The Schiff-base bis-imine ligand (L2, 2.7) was found to be highly reactive; single crystals grown from dry methanol afforded compound (2.14) for which two methanol molecules had added across the imine double bond. The susceptibility of this ligand to nucleophilic attack at its imine functionality assisted via chelation to Lewis acidic metal ions adds an interesting dimension to its coordination chemistry. In this respect, a Co(II) quaterpyridine-type complex was prepared via a one-pot transformation of ligand L2 in the presence of a Lewis acidic metal salt. The rearranged complex was characterized by X-ray crystallography and a reaction mechanism for its formation has been proposed. Three additional rearranged complexes (2.13), (2.17) and (2.19) were also isolated when ligand (L2, 2.7) was reacted with transition metal ions. The molecular structures of all three complexes have been determined by X-ray crystallography. The second class of compounds that are reported in this thesis, are the two diacetyl pyridine derivatives, 4-pyridyl-2,6-diacetylpyridine (5.5) and 2,2'-6,6'-tetraacetyl-4,4'-bipyridine (5.15). Both of these compounds have been designed as intermediates for the metal templated assembly of a Schiff-base N3O2 macrocycle. From compound (5.15), a covalently tethered dimeric Mn(II) macrocyclic compound of general formula {[Mn^C^XJCl-FkO^Cl-lO.SFbO (5.16) was prepared and characterized. The X-ray analysis of (5.16) reveals that the two manganese ions assume a pentagonal-bipyramidal geometry with the macrocycle occupying the pentagonal plane and the axial positions being filled by a halide ion and a H2O molecule. Magnetic susceptibility data reveal the occurrence of antiferromagnetic interactions between covalently tethered Mn(II)-Mn(II) dimeric units. Following this methodology a Co(II) analogue (5.17) has also been prepared which is isostructural with (5.16).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two classes of building blocks have been prepared and characterized and their coordination chemistry explored working towards the preparation of new molecule-based magnetic materials. In the first project, the amine functionality of 3,3'-diamino-2,2'- bipyridine was exploited for the preparation of a new family of ligands (H2L 1)-(H2L 4). The molecular structures of three ligands have been fully characterized by X-ray crystallography. [molecular structure diagram will not copy here, but is available in full pdf.] The coordination chemistry of these ligands with divalent first row transition metal ions was investigated. For ligand (H2L1), the molecular structures of four coordination complexes with stoichiometries [Zn2(Ll)(OAc)(MeO)]2 (I), [Cu2(L1)(OAc)2 (II), [Li(L1)]3 (III), and [Ni(L1)]3 (IV) were determined by X-ray crystallography. For ligand (H2L2), a Cu(II) complex of stoichiometry [Cu3(L2)(OAc)3MeO] (V) was determined by X-ray crystallography. The magnetic properties of complexes (II), (III), and (V) have been fully elucidated. In project two, synthetic strategies for the preparation of porphyrin molecules bearing triol substituents is presented. Following this approach, three new porphyrin derivatives have been prepared and characterized [Zn(HPTPP-CH2C(CH20H)3)] (VI), [P(TPP)(OCH2C(CH2)H)3)2]+CL- (VII), and [P(OEP)(C6H5)(OCH2C(CH2OH)3)]+Cl- (VIII). Attempts to exchange the labile methoxide bridges of a tetraironIIl single molecule magnet of stoichiometry [Fe4(OMe)6(dpm)6] (Hdpm = dipivaloylmethane) with the triol appended porphyrins will be discussed. [molecular structure diagram will not copy here, but is available in full pdf.]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two classes of compounds have been prepared and characterized as building blocks for chiral magnets and ferromagnetic conductors. In the fIrst project, the organic framework of a pentadentate, (N302) macro cycle has been synthetically modifIed to introduce phenyl substituents into its organic framework and the synthesis of four new [Fe(In(N302)(CN)2] complexes (I) - (IV) is presented. [Molecular diagram availble in pdf] This work represents the fIrst structural and magnetic studies of a family of spin crossover macrocycles that comprise of both structural and stereo-isomers. Magnetic susceptibility and Mossbauer data for the R,R-complex (I) is consistent with both a thermal and a light induced spin crossover transition. The X-ray data supports a change in geometry accompanying the thermal spin transition, from a high spin (HS) 7 -coordinate complex at room temperature to a low spin (LS) 5-coordinate complex at 100 K. The crystal structure ofthe racemic complex (III) reveals a HS, 7-coordinate complex at 200 K that undergoes no signifIcant structural changes on cooling. In contrast, the magnetic - susceptibility and Mossbauer data collected on a powder sample of the racemic complex are consistent with a LS complex. Finally, the meso complex (IV) was prepared and its structure and magnetic properties are consistent with a 5-coordinate LS complex that remains low spin, but undergoes conformational changes on cooling in solution. The chiral [Fe(H)(N302)(CN)2] macro cycle (I), together with its Mn(H) and Fe(H) derivatives have also been exploited as building blocks for the self-assembly of chiral magnets. In the second project, a synthetic route for the preparation of tetrathiafulvalene (TTF) donors covalently attached to a diisopropyl verdazyl radical via a cross conjugated pyridyl linker IS presented. Following this strategy, four new TTF-py- (diisopropyl)verdazyl radicals have been prepared and characterized (V) - (VIII) . [Molecular diagram available in pdf] The first (2:1) charge transfer complex ofa TTF-py-(diisopropyl)verdazyl radical donor and a TCNQ acceptor has been prepared and structurally characterized. The crystal packing shows that the donor and acceptor molecules are organized in a mixed stacking arrangement consistent with its insulating behaviour. EPR and magnetic susceptibility data support intramolecular ferromagnetic interactions between the TTF and the verdazyl radicals and antiferromagnetic interactions between TTF donors within a stack. In an attempt to increase the intramolecular exchange interaction between the two radicals, a TTF-x-(diisopropyl)verdazyl radical (IX) was prepared, where the two radicals are connected ia a conjugated divinylene linker. The neutral radical donors stack in a more favourable head-to-head arrangement but the bulky isopropyl groups prevent the donor radicals from stacking close enough together to facilitate good orbital overlap. [Molecular diagram available in pdf].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis and studies of two classes of poly dentate ligands are presented as two projects. In project 1, four new carboxamide ligands have been synthesised via the condensation of 2,2',6,6'-tetrachloroformyl-4,4'-bipyridine or 2,6-dichloroformyl pyridine together with heterocyclic amines containing pyridine or pyrazole substituents. The coordination chemistry of these ligands has been investigated and studies have shown that with a Cu(II) salt, two carboxamide ligands LJ and L2 afford large clusters with stoichiometries [Cu8(L1)4Cl16].CHCl3.5H2O.7CH3OH (I) and [Cu9(L2)6Cl6].CH3OH.5H2O.(C2H5)3N (II) respectively. [molecular diagram availabel in pdf]. X-ray diffraction studies of cluster (I) reveal that it has approximate S4 symmetry and is comprised of four ligands and eight copper (II) centers. Here, coordination takes place via amide 0 atoms, and pyrazole nitrogens. This complex is the first reported example of an octanuclear copper cluster with a saddle-shaped structure. The second cluster comprises nine copper ions that are arranged in a cyclic array. Each ligand coordinates three copper centers and each copper ion shares two ligands to connect six ligands with nine copper ions. The amide nitrogens are completely deprotonated and both amide Nand 0 atoms coordinate the metal centres. The cluster has three-fold symmetry. There are six chloride ions, three of which are bridging two neighbouring Cu(II) centres. Magnetic studies of (I) and (II) reveal that both clusters display weak antiferromagnetic interactions between neighbouring Cu(II) centers at low temperature. In the second project, three complexes with stoichiometries [Fe[N302](SCN)2]2 (III), R,R-[Fe[N3O2](SCN)2 (IV) and R,R-]Fe[N3O2](CN)2] (V) were prepared and characterized, where [N302] is a pentadentate macrocycle. Complex (III) was prepared via the metal templated Schiff-base condensation of 2,2',6,6'-tetraacetyl-4,4'-bipyridine together with 3,6-dioxaoctane-I,8-diamine and comprises of a dimeric macro cycle where the two Fe(II) centres are in a pentagonal-bipyramidal environment with the [N302] ligands occupying the equatorial plane and two axial NCS ligands. Complexes (IV) and (V) were prepared via the condensation of 2,6-diacetylpyridine together with a chiral diamine in the presence of FeCh. The synthetic strategy for the preparation of the chiral diamine (4R,5R)-4,5-diphenyl-3,6-dioxa-I,8-octane-diamine was elucidated. The chirality of both macrocycles (IV) and (V) was probed by circular dichroism spectroscopy. The crystal structure of (IV) at 200 K contains two independent molecules in the unit cell, both of which contain a hepta-coordinated Fe(II) and axial NCS ligands. Variable temperature magnetic susceptibility and structural studies are consistent with a high spin Fe(II) complex and show no evidence of any spin crossover behaviour. In contrast, the bis cyanide derivative (V) crystallizes with two independent molecules in the unit cell, both of which have different coordination geometries consistent with different spin states for the two Fe(II) centres. At 250 K, the molecular structure of (V) shows the presence of both 7- and a 6-coordinate Fe(II) complexes in the crystal lattice. As the temperature is lowered, the molecules undergo a structural change and at 100 K the structural data is consistent with a 6- and 5-coordinate Fe(II) complex in the unit cell. Magnetic studies confirm that this complex undergoes a gradual, thermal, spin crossover transition in the solid state. Photomagnetic measurements indicate this is the first chiral Fe (II) sea complex to exhibit a LIESST.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Work in the area of molecule-based magnetic and/or conducting materials is presented in two projects. The first project describes the use of 4,4’-bipyridine as a scaffold for the preparation of a new family of tetracarboxamide ligands. Four new ligands I-III have been prepared and characterized and the coordination chemistry of these ligands is presented. This project was then extended to exploit 4,4’-bipyridine as a covalent linker between two N3O2 macrocyles. In this respect, three dimeric macrocycles have been prepared IV-VI. Substitution of the labile axial ligands of the Co(II) complex IV by [Fe(CN)6]4- afforded the self-assembly of the 1-D polymeric chain {[Co(N3O2)H2O]2Fe(CN)6}n•3H2O that has been structurally and magnetically characterized. Magnetic studies on the Fe(II) complexes V and VI indicate that they undergo incomplete spin crossover transitions in the solid state. Strategies for the preparation of chiral spin crossover N3O2 macrocycles are discussed and the synthesis of the novel chiral Fe(II) macrocyclic complex VII is reported. Magnetic susceptibility and Mössbauer studies reveal that this complex undergoes a gradual spin crossover in the solid state with no thermal hysteresis. Variable temperature X-ray diffraction studies on single crystals of VII reveal interesting structural changes in the coordination geometry of the macrocycle accompanying its SCO transition. The second project reports the synthesis and characterization of a new family of tetrathiafulvalene derivatives VIII – XII, where a heterocyclic chelating ligand is appended to a TTF donor via an imine linker. The coordination chemistries of these ligands with M(hfac)2.H2O (M( = Co, Ni, Mn, Cu) have been explored and the structural and magnetic properties of these complexes are described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The preparation and characterization of coordination complexes of Schiff-base and crown ether macrocycles is presented, for application as contrast agents for magnetic resonance imaging, Project 1; and single-molecule magnets (SMMs), Projects 2 and 3. In Project 1, a family of eight Mn(II) and Gd(III) complexes of N3X2 (X = NH, O) and N3O3 Schiff-base macrocycles were synthesized, characterized, and evaluated as potential contrast agents for MRI. In vitro and in vivo (rodent) studies indicate that the studied complexes display efficient contrast behaviour, negligible toxicity, and rapid excretion. In Project 2, DyIII complexes of Schiff-base macrocycles were prepared with a view to developing a new family of mononuclear Ln-SMMs with pseudo-D5h geometries. Each complex displayed slow relaxation of magnetization, with magnetically-derived energy barriers in the range Ueff = 4 – 24 K. In Project 3, coordination complexes of selected later lanthanides with various crown ether ligands were synthesized. Two families of complexes were structurally and magnetically analyzed: ‘axial’ or sandwich-type complexes based on 12-crown-4 and 15-crown-5; and ‘equatorial’ complexes based on 18-crown-6. Magnetic data are supported by ab initio calculations and luminescence measurements. Significantly, the first mononuclear Ln-SMM prepared from a crown ether ligand is described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our work on single molecule magnets and multifunctional magnetic materials is presented in four projects. In the first project we show for first time that heteroatomic-type pseudohalides, such as OCN-, can be employed as structure-directing ligands and ferromagnetic couplers in higher oxidation state metal cluster chemistry. The initial use of cyanato groups in Mn cluster chemistry has afforded structurally interesting MnII/III14 (1) and MnII/III/IV16 (2) clusters in which the end-on bridging cyanates show a preference in binding through their O-atom. The Mn14 compound shows entirely visible out-of-phase alternating currect signals below 5 K and large hysteresis loops below 2 K. Furthermore, the amalgamation of azido groups with the triethanolamine tripodal ligand in manganese carboxylate cluster chemistry has led to the isolation of a new ferromagnetic, high-nuclearity and mixed-valence MnII/III15Na2 (3) cluster with a large ground-state spin value of S = 14. In the second project we demonstrate a new synthetic route to purely inorganic-bridged, transition metal-azido clusters [CoII7 (4) and NiII7 (5)] and coordination polymers [{FeII/III2}n (6)] which exhibit strong ferromagnetic, SMM and long-range magnetic ordering behaviors. We also show that access to such a unique ferromagnetic class of inorganic, N-rich and O-free materials is feasible through the use of Me3SiN3 as the azido-ligand precursor without requiring the addition of any organic chelating/bridging ligand. In the last projects we have tried to bring together molecular magnetism and optics via the synthesis of multifunctional magnetic materials based on 3d- or 4f-metal ions. We decided to approach such challenge from two different directions: firstly, in our third project, by the deliberate replacement of non-emissive carboxylato ligands in known 3d-SMMs with their fluorescent analogues, without perturbing the metal-core structure and SMM properties (complexes 7, 8, and 9). The second route (last project) involves the use of naphthalene or pyridine-based polyalcohol bridging ligands for the synthesis of new polynuclear LnIII metal clusters (Ln = lanthanide) with novel topologies, SMM behaviors and luminescent properties arising from the increased efficiency of the “antenna” organic group. This approach has led us to the isolation of two new families of LnIII8 (complexes 10-13) and LnIII4 (complexes 14-20) clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Second-rank tensor interactions, such as quadrupolar interactions between the spin- 1 deuterium nuclei and the electric field gradients created by chemical bonds, are affected by rapid random molecular motions that modulate the orientation of the molecule with respect to the external magnetic field. In biological and model membrane systems, where a distribution of dynamically averaged anisotropies (quadrupolar splittings, chemical shift anisotropies, etc.) is present and where, in addition, various parts of the sample may undergo a partial magnetic alignment, the numerical analysis of the resulting Nuclear Magnetic Resonance (NMR) spectra is a mathematically ill-posed problem. However, numerical methods (de-Pakeing, Tikhonov regularization) exist that allow for a simultaneous determination of both the anisotropy and orientational distributions. An additional complication arises when relaxation is taken into account. This work presents a method of obtaining the orientation dependence of the relaxation rates that can be used for the analysis of the molecular motions on a broad range of time scales. An arbitrary set of exponential decay rates is described by a three-term truncated Legendre polynomial expansion in the orientation dependence, as appropriate for a second-rank tensor interaction, and a linear approximation to the individual decay rates is made. Thus a severe numerical instability caused by the presence of noise in the experimental data is avoided. At the same time, enough flexibility in the inversion algorithm is retained to achieve a meaningful mapping from raw experimental data to a set of intermediate, model-free

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I: Ultra-trace determination of vanadium in lake sediments: a performance comparison using O2, N20, and NH3 as reaction gases in ICP-DRC-MS Thermal ion-molecule reactions, targeting removal of specific spectroscopic interference problems, have become a powerful tool for method development in quadrupole based inductively coupled plasma mass spectrometry (ICP-MS) applications. A study was conducted to develop an accurate method for the determination of vanadium in lake sediment samples by ICP-MS, coupled with a dynamic reaction cell (DRC), using two differenvchemical resolution strategies: a) direct removal of interfering C10+ and b) vanadium oxidation to VO+. The performance of three reaction gases that are suitable for handling vanadium interference in the dynamic reaction cell was systematically studied and evaluated: ammonia for C10+ removal and oxygen and nitrous oxide for oxidation. Although it was able to produce comparable results for vanadium to those using oxygen and nitrous oxide, NH3 did not completely eliminate a matrix effect, caused by the presence of chloride, and required large scale dilutions (and a concomitant increase in variance) when the sample and/or the digestion medium contained large amounts of chloride. Among the three candidate reaction gases at their optimized Eonditions, creation of VO+ with oxygen gas delivered the best analyte sensitivity and the lowest detection limit (2.7 ng L-1). Vanadium results obtained from fourteen lake sediment samples and a certified reference material (CRM031-040-1), using two different analytelinterference separation strategies, suggested that the vanadium mono-oxidation offers advantageous performance over the conventional method using NH3 for ultra-trace vanadium determination by ICP-DRC-MS and can be readily employed in relevant environmental chemistry applications that deal with ultra-trace contaminants.Part II: Validation of a modified oxidation approach for the quantification of total arsenic and selenium in complex environmental matrices Spectroscopic interference problems of arsenic and selenium in ICP-MS practices were investigated in detail. Preliminary literature review suggested that oxygen could serve as an effective candidate reaction gas for analysis of the two elements in dynamic reaction cell coupled ICP-MS. An accurate method was developed for the determination of As and Se in complex environmental samples, based on a series of modifications on an oxidation approach for As and Se previously reported. Rhodium was used as internal standard in this study to help minimize non-spectral interferences such as instrumental drift. Using an oxygen gas flow slightly higher than 0.5 mL min-I, arsenic is converted to 75 AS160+ ion in an efficient manner whereas a potentially interfering ion, 91Zr+, is completely removed. Instead of using the most abundant Se isotope, 80Se, selenium was determined by a second most abundant isotope, 78Se, in the form of 78Se160. Upon careful selection of oxygen gas flow rate and optimization ofRPq value, previous isobaric threats caused by Zr and Mo were reduced to background levels whereas another potential atomic isobar, 96Ru+, became completely harmless to the new selenium analyte. The new method underwent a strict validation procedure where the recovery of a suitable certified reference material was examined and the obtained sample data were compared with those produced by a credible external laboratory who analyzed the same set of samples using a standardized HG-ICP-AES method. The validation results were satisfactory. The resultant limits of detection for arsenic and selenium were 5 ng L-1 and 60 ng L-1, respectively.