6 resultados para flash fermentation

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adapted metabolic response of commercial wine yeast under prolonged exposure to concentrated solutes present in Icewine juice is not fully understood. Presently, there is no information regarding the transcriptomic changes in gene expression associated with the adaptive stress response ofwine yeast during Icewine fermentation compared to table wine fermentation. To understand how and why wine yeast respond differently at the genomic level and ultimately at the metabolic level during Icewine fermentation, the focus ofthis project was to identify and compare these differences in the wine yeast Saccharomyces cerevisiae KI-Vll16 using cDNA microarray technology during the first five days of fermentation. Significant differences in yeast gene expression patterns between fermentation conditions were correlated to differences in nutrient utilization and metabolite production. Sugar consumption, nitrogen usage and metabolite levels were measured using enzyme assays and HPLC. Also, a small subset of differentially expressed genes was verified using Northern analysis. The high osmotic stress experienced by wine yeast throughout Icewine fermentation elicited changes in cell growth and metabolism correlating to several fermentation difficulties, including reduced biomass accumulation and fermentation rate. Genes associated with carbohydrate and nitrogen transport and metabolism were expressed at lower levels in Icewine juice fermenting cells compared to dilute juice fermenting cells. Osmotic stress, not nutrient availability during Icewine fermentation appears to impede sugar and nitrogen utilization. Previous studies have established that glycerol and acetic acid production are increased in yeast during Icewine fermentation. A gene encoding for a glycerollW symporter (STL1) was found to be highly expressed up to 25-fold in the i Icewine juice condition using microarray and Northern analysis. Active glycerol transport by yeast under hyperosmotic conditions to increase cytosolic glycerol concentration may contribute to reduced cell growth observed in the Icewine juice condition. Additionally, genes encoding for two acetyl CoA synthetase isoforms (ACSl and ACS2) were found to be highly expressed, 19- and II-fold respectively, in dilute juice fermenting cells relative to the Icewine juice condition. Therefore, decreased conversion of acetate to acetyl-CoA may contribute to increased acetic acid production during Icewine fermentation. These results further help to explain the response of wine yeast as they adapt to Icewine juice fermentation. ii

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Icewine is an intensely s\veet dessert \vine fermented from the juice of naturally frozen grapes. Icewine fermentation poses many challenges such as failure to reach desired ethanol levels and production of high levels of volatile acidity in the fonn of acetic acid. This study investigated the impact of micronutrient addition (GO-FERM® and NATSTEP®) during the rehydration stage of the commercial \vine yeast Saccharomyces cerevisiae KI-VIII6 during Ice\vine fermentation. Sterile-filtered and unfiltered Riesling Ice\vine juice was inoculated \vith yeast rehydrated under four different conditions: in water only; with GO-FERM®; with NATSTEP®; or the combination of both micronutrient products in the rehydration water. Using sterile-filtered Icewine juice, yeast rehydration had a positive impact of reducing the rate of acetic acid produced as a function of sugar consumed, reducing the ratio of acetic acid/ethanol and reducing the ratio of acetic acid/glycerol. In the sterile-filtered fermentation, yeast rehydrated with micronutrients generated 9-times less acetic acid per gram of sugar in the first 48 hours compared to yeast rehydrated only \vith water and resulted in a 17% reduction in acetic acid in the final \vine \vhen normalized to sugar consumed. However, the sterile-filtered fermentations likely became stuck due to the overc1arification of the juice as evidenced from the low sugar consumption (117 gIL) that could not be completely overcome by the micronutrient treatments (144 gIL sugar consumed) to reach a target ethanol of IO%v/v. Contrary to \vhat \vas observed in the sterile-filtered treatements, using unfiltered Ice\vine juice, yeast micronutrient addition had no significant impact of reducing the rate of acetic acid produced as a function of sugar consumed, reducing the ratio of acetic acid/ethanol and reducing the ratio of acetic acid/glycerol. However, in the unfiltered fermentation, micronutrient addition during yeast rehydration caused a reduction in the acetic acid produced as a function of sugar consumed up to 150 giL sugar consumed.. In contrast to the sterile-filtered fermentations, the unfiltered fermentations did not become stuck as evidenced from the higher sugar consumption (l47-174g1L). The largest effects of micronutrient addition are evident in the first two days of both sterile and unfiltered fermentations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Icewine is an intensely sweet, unique dessert wine fennented from the juice of grapes that have frozen naturally on the vine. The juice pressed from the frozen grapes is highly concentrated, ranging from a minimum of 35° Brix to approximately 42° Brix. Often Icewine fennentations are sluggish, taking months to reach the desired ethanol level, and sometimes become stuck. In 6 addition, Icewines have high levels of volatile acidity. At present, there is no routine method of yeast inoculation for fennenting Icewine. This project investigated two yeast inoculum levels, 0.2 gIL and 0.5 gIL. The fennentation kinetics of inoculating these yeast levels directly into the sterile Icewine juice or conditioning the cells to the high sugar levels using a step wise acclimatization procedure were also compared. The effect of adding GO-FERM, a yeast nutrient, was also assessed. In the sterile fennentations, yeast inoculated at 0.2 gIL stopped fennenting before the required ethanol level was achieved, producing only 7.8% (v/v) and 8.1 % (v/v) ethanol for the direct and conditioned inoculations, respectively. At 0.5 gIL, the stepwise conditioned cells fennented the most sugar, producing 12.2% (v/v) ethanol, whereas the direct inoculum produced 10.5% (v/v) ethanol. The addition of the yeast nutrient GO-FERM increased the rate of biomass accumulation, but reduced the ethanol concentration in wines fennented at 0.5 gIL. There was no significant difference in acetic acid concentration in the final wines across all treatments. Fennentations using unfiltered Icewine juice at the 0.5 gIL inoculum level were also compared to see if the effects of yeast acclimatization and micronutrient addition had the same impact on fennentation kinetics and yeast metabolite production as observed in the sterile-filtered juice fennentations. In addition, a full descriptive analysis of the finished wines was carried out to further assess the impact of yeast inoculation method on Icewine sensory quality. At 0.5 gIL, the stepwise conditioned cells fennented the most sugar, producing 11.5% (v/v) ethanol, whereas the direct inoculum produced 10.0% (v/v) ethanol. The addition of the yeast nutrient GO-FERM increased the peak viable cell numbers, but reduced the ethanol concentration in wines fennented at 0.5 gIL. There was a significant difference 7 in acetic acid concentration in the final wines across all treatments and all treatments affected the sensory profiles of the final wines. Wines produced by direct inoculation were described by grape and raisin aromas and butter flavour. The addition of GO-FERM to the direct inoculation treatment shifted the aroma/flavour profiles to more orange flavour and aroma, and a sweet taste profile. StepWise acclimatizing the cells resulted in wines described more by peach and terpene aroma. The addition of GO-FERM shifted the profile to pineapple and alcohol aromas as well as alcohol flavour. Overall, these results indicate that the addition of GO-FERM and yeast acclimatization shortened the length of fermentation and impacted the sensory profiles of the resultant wines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine the potential of biochemical parameters, such as enzyme activity and adenosine triphosphate (ATP) levels, as monitors of process performance in the Upflow Anaerobic Sludge Blanket (UASB) reactor utilizing a starch wastewater. The acid and alkaline phosphatase activity and the ATP content of the UASB sludge were measured in response to changes in flow rate and nutrient loading. Conventional parameters of process performance, such as gas production, acetic acid production, COD, phosphorus, nitrogen and suspended solids loadings and % COD removal were also monitored. The response of both biochemical and conventional parameters to changing process conditions was then compared. Alkaline phosphatase activity exhibited the highest activity over the entire study perioda A high suspended solids loading was observed to upset the system in terms of gas production, acetic acid production and % COD removala The initial rate of increase in alkaline phosphatase activity following an increase in loading was four times as great during process upset than under conditions of good performance. The change in enzyme actiVity was also more sensitive to process upset than changes in acetic acid production. The change in ATP content of the sludge with time suggested that enzyme actiVity was changing independently of the actual viable biomass present. The bacterial composition of the anaerobic sludge granules was similar to that of other sludge bed systems, at the light and scanning electron microscope level. Isolated serum bottle cultures produced several acids involved in anaerobic carbohydrate metabolism. The overall performance of the UASB system indicated that higher loadings of soluble nutrients could have been tolerated by the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum production rates ofs and decay kinetics for the hydrated electron, the indolyl neutral radical and the indole triplet state have been obtained in the microsecond, broadband (X > 260 nm) flash photolysis of helium-saturated, neutral aqueous solutions of indole, in the absence and in the presence of the solutes NaBr, BaCl2*2H20 and CdSCV Fluorescence spectra and fluorescence lifetimes have also been obtained in the absence and in the presence of the above solutes, The hydrated electron is produced monophotonically and biphotonically at an apparent maximum rate which is increased by BaCl2*2H20 and decreased by NaBr and CdSOif. The neutral indolyl radical may be produced monophotonically and biphotonically or strictly monophotonically at an apparent maximum rate which is increased by NaBr and CdSO^ and is unaffected by BaCl2*2H20. The indole triplet state is produced monophotonically at a maximum rate which is increased by all solutes. The hydrated electron decays by pseudo first order processes, the neutral indolyl radical decays by second order recombination and the indole triplet state decays by combined first and second order processes. Hydrated electrons are shown to react with H , H2O, indole, Na and Cd"*""1"". No evidence has been found for the reaction of hydrated electrons with Ba . The specific rate of second order neutral indolyl radical recombination is unaffected by NaBr and BaCl2*2H20, and is increased by CdSO^. Specific rates for both first and second order triplet state decay processes are increased by all solutes. While NaBr greatly reduced the fluorescence lifetime and emission band intensity, BaCl2*2H20 and CdSO^ had no effect on these parameters. It is suggested that in solute-free solutions and in those containing BaCl2*2H20 and CdSO^, direct excitation occurs to CTTS states as well as to first excited singlet states. It is further suggested that in solutions containing NaBr, direct excitation to first excited singlet states predominates. This difference serves to explain increased indole triplet state production (by ISC from CTTS states) and unchanged fluorescence lifetimes and emission band intensities in the presence of BaCl2*2H20 and CdSOt^., and increased indole triplet state production (by ISC from S^ states) and decreased fluorescence lifetime and emission band intensity in the presence of NaBr. Evidence is presented for (a) very rapid (tx ^ 1 us) processes involving reactions of the hydrated electron with Na and Cd which compete with the reformation of indole by hydrated electron-indole radical cation recombination, and (b) first and second order indole triplet decay processes involving the conversion of first excited triplet states to vibrationally excited ground singlet states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999.5 B63 P54 2007