12 resultados para fetus membrane
em Brock University, Canada
Resumo:
Formulations of a general bactericidal agent, chlorhexidine, mixed with a phospholipid at different concentrations are investigated using ^H NMR spectroscopy on a chain-deuterated lipid analog. Lipid-chlorhexidine formulation is known to release the drug into an aqueous medium slowly, maintaining a comparable concentration of the drug for up to four times longer than a direct aqueous solution. The NMR data does not support the proposed liposomal entrapment of chlorhexidine in lipid compartments. Complex thermal history of the lipid-chlorhexidine preparations is investigated in detail. In preparation for a counterpart measurement, using ^H NMR of deuterated chlorhexidine mixed with protonated lipid, the synthesis of a deuterated analog of chlorhexidine is performed.
Resumo:
Membranes are dynamic structures that affect cell structure and function. Compositional changes ofmembranes have been shown with the application of a perturbation; however these are limited to whole tissue analysis. The purpose of this thesis was to compare the phospholipid (PL) fatty acid (FA) composition of rat whole muscle (Wm) to 1) purified and non-purified subsarcolemmal (SS) mitochondria in soleus, plantaris, and red gastrocnemius, and 2) sarcolemma, transverse-tubules, SS and intermyofibrillar (IMF) mitochondria fix)m whole hindlimb. The major findings were that 1) contamination significantly altered the PL FA composition of the SS mitochondrial membrane fraction, 2) Wm and SS mitochondria compositions differed between muscle types, and 3) Wm did not accurately reflect the PL FA composition of any isolated subcellular membranes, with each being unique from each other. As such, the relevancy of the trends reported in the literature of the effects of perturbations on Wm may be limited.
Resumo:
examined in Choanephora cucurbita rum during the early stages of infection by Piptocephalis virginiana » There was a small but consistent increase in the leakage of electrolytes, amino acids and sugars as a result of infection. These low levels of differential leakage in infected tissues are explained on the basis of the nature of this obligate, biotrophic, mycoparasitic system. Quantitative analysis of the twenty six amino acids and amino compounds detected in the leacheates — showed similar profiles in infected and control host and no new species of amino acids or amino compounds were detected in either infected or control host leacheates. Comparatively high amounts of aspartic acid, glutamic acid and alanine were found in the leacheates of host and infected host . Analyses of the sugars comprising the leacheates of infected and control host showed the presence of eight sugars, among which glucose was found in significant amounts (50-53%) ' The nutritional implication of this preferential leakage is discussed. No significant difference was observed in the leacheates of infected host sugar profiles compared with that of the control host. Profiles of the internal pool sugars of infected and control host did not reflect that obtained from the leacheate data, perhaps owing to leakage of sugars in a selective manner . Membrane lipid analyses yielded higher levels of lipid in infected host compared with the control, both at the 24 h and 36 h analyses. In addition, preliminary investigations of phosphorous-32 incorporation and turnover in phospholipids showed higher levels of 32p incorporation and turnover in infected host compared with the control. No apparent difference was noted in the profiles of the neutral lipid classes and the polar lipid classes of the membrane lipids as determined by one and two dimensional thin-layer chromatography respectively. However, a small but consistently higher degree of unsaturation was detected in the fatty acids of infected tissue compared with the control. Also, '^''-^^''^^'-'-^'^^c acid, a polyunsaturated fatty acid previously reported to show a direct correlation during the early stages of infection and the degree of parasitism of P. virginiana on C. cucurbitarum , was found in higher amounts in infected host membrane lipids compared with that of the control host. The implications of these membrane lipid alterations are discussed with particular reference to the small but consistently higher leakage of electrolytes, amino acids and sugars observed during infection in this study.
Resumo:
The distribution of excitation energy between the two photosystems (PSII and PSI) of photosynthesis is regulated by the light state transition. Three models have been proposed for the mechanism of the state transition in phycobilisome (PBS) containing organisms, two involving protein phosphorylation. A procedure for the rapid isolation of thylakoid membranes and PBS fractions from the cyanobacterium Synechococcus m. PCC 6301 in light state 1 and light state 2 was developed. The phosphorylation of thylakoid and soluble proteins rapidly isolated from intact cells in state 1 and state 2 was investigated. 77 K fluorescence emission spectra revealed that rapidly isolated thylakoid membranes retained the excitation energy distribution characteristic of intact cells in state 1 and state 2. Phosphoproteins were identified by gel electrophoresis of both thylakoid membrane and phycobilisome fractions isolated from cells labelled with 32p orthophosphate. The results showed very close phosphoprotein patterns for either thylakoid membrane or PBS fractions in state 1 and state 2. These results do not support proposed models for the state transition which required phosphorylation of PBS or thylakoid membrane proteins.
Resumo:
Thylakoid membrane fractions were prepared from specific regions of thylakoid membranes of spinach (Spinacia oleracea). These fractions, which include grana (83), stroma (T3), grana core (8S), margins (Ma) and purified stroma (Y100) were prepared using a non-detergent method including a mild sonication and aqueous two-phase partitioning. The significance of PSlla and PSII~ centres have been described extensively in the literature. Previous work has characterized two types of PSII centres which are proposed to exist in different regions of the thylakoid membrane. a-centres are suggested to aggregate in stacked regions of grana whereas ~-centres are located in unstacked regions of stroma lamellae. The goal of this study is to characterize photosystem II from the isolated membrane vesicles representing different regions of the higher plant thylakoid membrane. The low temperature absorption spectra have been deconvoluted via Gaussian decomposition to estimate the relative sub-components that contribute to each fractions signature absorption spectrum. The relative sizes of the functional PSII antenna and the fluorescence induction kinetics were measured and used to determine the relative contributions of PSlla and PSII~ to each fraction. Picosecond chlorophyll fluorescence decay kinetics were collected for each fraction to characterize and gain insight into excitation energy transfer and primary electron transport in PSlla and PSII~ centres. The results presented here clearly illustrate the widely held notions of PSII/PS·I and PSlIa/PSII~ spatial separation. This study suggests that chlorophyll fluorescence decay lifetimes of PSII~ centres are shorter than those of PSlIa centres and, at FM, the longer lived of the two PSII components renders a larger yield in PSlIa-rich fractions, but smaller in PSIlr3-rich fractions.
Resumo:
This thesis applies x-ray diffraction to measure he membrane structure of lipopolysaccharides and to develop a better model of a LPS bacterial melilbrane that can be used for biophysical research on antibiotics that attack cell membranes. \iVe ha'e Inodified the Physics department x-ray machine for use 3.'3 a thin film diffractometer, and have lesigned a new temperature and relative humidity controlled sample cell.\Ve tested the sample eel: by measuring the one-dimensional electron density profiles of bilayers of pope with 0%, 1%, 1G :VcJ, and 100% by weight lipo-polysaccharide from Pse'udo'lTwna aeTuginosa. Background VVe now know that traditional p,ntibiotics ,I,re losing their effectiveness against ever-evolving bacteria. This is because traditional antibiotic: work against specific targets within the bacterial cell, and with genetic mutations over time, themtibiotic no longer works. One possible solution are antimicrobial peptides. These are short proteins that are part of the immune systems of many animals, and some of them attack bacteria directly at the membrane of the cell, causing the bacterium to rupture and die. Since the membranes of most bacteria share common structural features, and these featuret, are unlikely to evolve very much, these peptides should effectively kill many types of bacteria wi Lhout much evolved resistance. But why do these peptides kill bacterial cel: '3 , but not the cells of the host animal? For gramnegative bacteria, the most likely reason is that t Ileir outer membrane is made of lipopolysaccharides (LPS), which is very different from an animal :;ell membrane. Up to now, what we knovv about how these peptides work was likely done with r !10spholipid models of animal cell membranes, and not with the more complex lipopolysa,echaricies, If we want to make better pepticies, ones that we can use to fight all types of infection, we need a more accurate molecular picture of how they \vork. This will hopefully be one step forward to the ( esign of better treatments for bacterial infections.
Resumo:
Sarco(endo)plasmic reticulum calcium ATPase (SERCA) is a transmembrane protein whose function is regulated by its immediate lipid environment (annulus). The composition of the annulus is currently unknown or it’s susceptibility to a high saturated fat diet (HSFD). Furthermore it is uncertain if HSFD can protect SERCA from thermal stress. The purpose of the study was to determine SERCA annular lipid composition, resulting impact of a HSFD, and in turn, influence on SERCA activity with and without thermal stress. The major findings were annular lipids were shorter and more saturated compared to whole homogenate and HSFD had no effect on annular lipid composition or SERCA activity with and without thermal stress. Both average chain length and unsaturation index were positively correlated with SERCA activity with and without thermal stress. These findings suggest that annular lipid composition is different than whole homogenate and its composition appears to be related to SERCA function.
Resumo:
Duchenne muscular dystrophy is a X-linked muscle disease, which leads to alterations in membrane phospholipid fatty acid (FA) composition and skeletal muscle damage. Increased membrane saturated FA in muscular dystrophy may suggest its association with increased susceptibility (as being the cause or consequence) to muscle damage. It was hypothesised that increased saturation is positively correlated to increased muscle damage. Correlations were hypothesized to be greater in extensor digitorum longus (EDL) at 20 weeks compared to soleus (SOL) at 10 weeks in dystrophin deficient (mdx) mice. Increased saturation was correlated to damage in EDL at both 10 and 20 weeks, with stronger correlations at 10 weeks. The results suggest that membrane PL FA composition may be associated with damage through two possible means. Increased saturation may be a cause or consequence of membrane damage. Association of membrane composition with eccentric induced damage has underscored the importance of saturated PL FA compositions in damage to dystrophic myofibres.
Resumo:
Human Class I phosphatidylinositol transfer proteins (PITPs) exists in two forms: PITPα and PITPβ. PITPs are believed to be lipid transfer proteins based on their capacity to transfer either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane compartments in vitro. In Drosophila, the PITP domain is found to be part of a multi-domain protein named retinal degeneration B (RdgBα). The PITP domain of RdgBα shares 40 % sequence identity with PITPα and has been shown to possess PI and PC binding and transfer activity. The detailed molecular mechanism of ligand transfer by the human PITPs and the Drosophila PITP domain remains to be fully established. Here, we investigated the membrane interactions of these proteins using dual polarization interferometry (DPI). DPI is a technique that measures protein binding affinity to a flat immobilized lipid bilayer. In addition, we also measured how quickly these proteins transfer their ligands to lipid vesicles using a fluorescence resonance energy transfer (FRET)-based assay. DPI investigations suggest that PITPβ had a two-fold higher affinity for membranes compared to PITPα. This was reflected by a four-fold faster ligand transfer rate for PITPβ in comparison to PITPα as determined by the FRET assay. Interestingly, DPI analysis also demonstrated that PI-bound human PITPs have lower membrane affinity compared to PC-bound PITPs. In addition, the FRET studies demonstrated the significance of membrane curvature in the ligand transfer rate of PITPs. The ligand transfer rate was higher when the accepting vesicles were highly curved. Furthermore, when the accepting vesicles contained phosphatidic acid (PA) which have smaller head groups, the transfer rate increased. In contrast, when the accepting vesicles contained phosphoinositides which have larger head groups, the transfer rate was diminished. However, PI, the favorite ligand of PITPs, or the presence of anionic lipids did not appear to influence the ligand transfer rate of PITPs. Both DPI and FRET examinations revealed that the PITP domain of RdgBα was able to bind to membranes. However, the RdgBα PITP domain appears to be a poor binder and transporter of PC.
Resumo:
Studies have demonstrated that the oxysterol binding protein (OSBP) acts as a phosphatidylinositol phosphate (PIP)-sterol exchanger at membrane contact sites (MCS) of the endoplasmic reticulum (ER) and Golgi. OSBP is known to pick up phosphatidylinositol-4-phosphate (PI(4)P) from the ER, transfer it to the trans-Golgi in exchange for a cholesterol molecule that is then transferred from the trans-Golgi to the ER. Upon further examination of this pathway by Ridgway et al. (1), it appeared that phosphorylation of OSBP played a role in the localization of OSBP. The dephosphorylation state of OSBP was linked to Golgi localization and the depletion of cholesterol at the ER. To mimic the phosphorylated state of OSBP, the mutant OSBP-S5E was designed by Ridgway et al. (1). The lipid and sterol recognition by wt-OSBP and its phosphomimic mutant OSBP-S5E were investigated using immobilized lipid bilayers and dual polarization interferometry (DPI). DPI is a technique in which the protein binding affinity to immobilized lipid bilayers is measured and the binding behavior is examined through real time. Lipid bilayers containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and varying concentrations of PI(4)Ps or sterols (cholesterol or 25-hydroxycholesterol) were immobilized on a silicon nitride chip. It was determined that wt-OSBP binds differently to PI(4)P-containing bilayers compared to OSBP-S5E. The binding behavior suggested that wt-OSBP extracts PI(4)P and the change in the binding behavior, in the case of OSBP-S5E, suggested that the phosphorylation of OSBP may prevent the recognition and/or extraction of PI(4)P. In the presence of sterols, the overall binding behavior of OSBP, regardless of phosphorylation state, was fairly similar. The maximum specific bound mass of OSBP to sterols did not differ as the concentration of sterols increased. However, comparing the maximum specific bound mass of OSBP to cholesterol with oxysterol (25-hydroxycholesterol), OSBP displayed nearly a 2-fold increase in bound mass. With the absence of the wt-OSBP-PI(4)P binding behavior, it can be speculated that the sterols were not extracted. In addition, the binding behavior of OSBP was further tested using a fluorescence based binding assay. Using 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (22-NBD cholesterol), wt-OSBP a one site binding dissociation constant Kd, of 15 ± 1.4 nM was determined. OSBP-S5E did not bind to 22-NBD cholesterol and Kd value was not obtained.