3 resultados para ethanol production strain

em Brock University, Canada


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wine produced using an appassimento-type process represents a new and exciting innovation for the Ontario wine industry. This process involves drying grapes that have already been picked from the vine, which increases the sugar content due to dehydration and induces a variety of changes both within and on the surface of the grapes. Increasing sugar contents in musts subject wine yeast to conditions of high osmolarity during alcoholic fermentations. Under these conditions, yeast growth can be inhibited, target alcohol levels may not be attained and metabolic by-products of the hyperosmotic stress response, including glycerol and acetic acid, may impact wine composition. The further metabolism of acetic acid to acetylCoA by yeast facilitates the synthesis of ethyl acetate, a volatile compound that can also impact wine quality if present in sufficiently high concentrations. The first objective of this project was to understand the effect of yeast strain and sugar concentration on fermentation kinetics and metabolite formation, notably acetic acid and ethyl acetate, during fermentation in appassimento-type must. Our working hypotheses were that (1) the natural isolate Saccharomyces bayanus would produce less acetic acid and ethyl acetate compared to Saccharomyces cerevisiae strain EC-1118 fermenting the high and low sugar juices; (2) the wine produced using the appassimento process would contain higher levels of acetic acid and lower levels of ethyl acetate compared to table wine; (3) and the strains would be similar in the kinetic behavior of their fermentation performances in the high sugar must. This study determined that the S. bayanus strain produced significantly less acetic acid and ethyl acetate in the appassimento wine and table wine fermentations. Differences in acetic acid and ethyl acetate production were also observed within strains fermenting the two sugar conditions. Acetic acid production was higher in table wine fermented by S. bayanus as no acetic acid was produced in appassimento-style wine, and 1.4-times higher in appassimento wine fermented by EC-1118 over that found in table wine. Ethyl acetate production was 27.6-times higher in table wine fermented by S. bayanus, and 5.2-times higher by EC-1118, compared to that in appassimento wine. Sugar utilization and ethanol production were comparable between strains as no significant differences were determined. The second objective of this project was to bring a method in-house for measuring the concentration of pyridine nucleotides, NAD+, NADP+, NADH and NADPH, in yeast cytosolic extract. Development of this method is of applicative interest for our lab group as it will enable the redox balance of the NAD+/ NADH and NADP+/ NADPH systems to be assessed during high sugar fermentations to determine their respective roles as metabolic triggers for acetic acid production. Two methods were evaluated in this study including a UV-endpoint method using a set of enzymatic assay protocols outlined in Bergmeyer (1974) and a colorimetric enzyme cycling method developed by Sigma-Aldrich® using commercial kits. The former was determined to be limited by its low sensitivity following application to yeast extract and subsequent coenzyme analyses, while the latter was shown to exhibit greater sensitivity. The results obtained from the kits indicated high linearity, accuracy and precision of the analytical method for measuring NADH and NADPH, and that it was sensitive enough to measure the low coenzyme concentrations present in yeast extract samples. NADtotal and NADPtotal concentrations were determined to be above the lower limit of quantification and within the range of the respective calibration curves, making this method suitable for our research purposes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Icewine is a sweet dessert wine fermented from the juice of grapes naturally frozen on the vine. The production of Icewine faces many challenges such as sluggish fermentation, which often yields wines with low ethanol, and an accumulation of high concentration of volatile acidity, mainly in the form of acetic acid. This project investigated three new yeast strains as novel starter cultures for Icewine fermentation with particular emphasis on reducing acetic acid production: a naturally occurring strain of S. bayanus/S. pastorianus isolated from Icewine grapes, and two hybrids between S. cerevisiae and S. bayanus, AWRI 1571 and AWRI 1572. These strains were evaluated for sugar consumption patterns and metabolic production of ethanol, glycerol and acetic acid, and were compared to the performance of a standard commercial wine yeast KI-VI116. The ITS rONA region of the two A WRI crosses was also analyzed during fermentations to assess their genomic stability. Icewine fermentations were performed in sterile filtered juice, in the absence of indigenous microflora, and also in unfiltered juice in order to mirror commercial wine making practices. The hybrid A WRI 1572 was found to be a promising candidate as a novel starter culture for Icewine production. I t produced 10.3 % v/v of ethanol in sterile Riesling Icewine fermentations and 11.2 % v/v in the unfiltered ones within a reasonable fermentation time (39 days). Its acetic acid production per gram sugar consumed was approximately 30% lower in comparison with commercial wine yeast K I -V 1116 under both sterile filtered and unfiltered fermentations. The natural isolate S. bayanus/S. pastorianus and AWRI 1571 did not appear to be suitable for commercial Icewine production. They reached the target ethanol concentration of approximately 10 % v/v in 39 day fermentations and also produced less acetic acid as a function of both time and sugar consumed in sterile fermentations compared to KI-V1116. However, in unfiltered fermentations, both of them failed to produce the target concentration of ethanol and accumulated high concentration of acetic acid. Both A WRI crosses displayed higher loss of or reduced copies in ITS rDNA region from the S. bayanus parent compared to the S. cerevisiae parent; however, these genomic losses could not be related to the metabolic profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maximum amount of ethyl carbamate (EC), a known animal carcinogen produced by the reaction of urea and ethanol, allowed in alcoholic beverages is regulated by legislation in many countries. Wine yeast produce urea by the metabolism of arginine, the predominant assimilable amino acid in must. This action is due to arginase (encoded by CARl). Regulation of CARl, and other genes in this pathway, is often attributed to a well-documented phenomenon known as nitrogen catabolite repression. The effect of the timing of di-ammonium phosphate (DAP) additions on the nitrogen utilization, regulation of CARl, and EC production was investigated. A correlation was found between the timing of DAP addition and the utilization of nitrogen. When DAP was added earlier in the fermentations, less amino nitrogen and more ammonia nitrogen was sequestered from the media by the cells. It was also seen that early DAP addition led to more total nitrogen being used, with a maximal difference of ~25% between fermentations where no DAP was added versus addition at the start of the fermentation. The effect of the timing ofDAP addition on the expression of CARJ during fermentation was analyzed via northern transfer and the relative levels of CARl expression were determined. The trends in expression can be correlated to the nitrogen data and be used to partially explain differences in EC formation between the treatments. EC was quantified at the end of fermentation by GC/MS. In Montrachet yeast, a significant positive correlation was found between the timing of DAP addition, from early to late, and the final EC concentration m the wine (r = 0.9226). In one of the fermentations, EC levels of 30.5 ppb was foimd when DAP was added at the onset of fermentation. A twofold increase (69.5 ppb) was observed when DAP was added after 75% of the sugars were metabolized. When no DAP was added, the ethyl carbamate levels are comparable at a value of 38 ppb. In contrast, the timing of DAP additions do not affect the level EC produced by the yeast ECU 18 in this manner. The study of additional yeast strains shows that the effect of DAP addition to fermentations is strain dependent. Our results reveal the potential importance of the timing of DAP addition to grape must with respect to EC production, and the regulatory effect of DAP additions on the expression of genes in the pathway for arginine metabolism in certain wine yeast strains.