2 resultados para equivalent mass

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined factors contributing to the differences in left ventricular mass as measured by Doppler echocardiography in children. Fourteen boys (10.3 ± 0.3 years of age) and 1 1 girls (10.5 ± 0.4 years of age) participated in the study. Height and weight were measured, and relative body fat was determined from the measurement of skinfold thickness according to Slaughter et al. (1988). Lean Body Mass was then calculated by subtracting the fat mass from the total body mass. Sexual maturation was self-assessed using the stages of sexual maturation by Tanner (1962). Both pubic hair development and genital (penis or breast for boys and girls respectively) development were used to determine sexual maturation. Carotid Pulse pressure was assessed by applanation tomometry in the left carotid artery. Cardiac mass was measured by Doppler Echocardiography. Images of cardiac structures were taken using B-Mode and were then translated to M- Mode. The dimensions at the end diastole were obtained at the onset of the QRS complex of the electrocardiogram in a plane through a standard position. Measurements included: (a) the diameter of the left ventricle at the end diastole was measured from the septum edge to the endocardium mean border, (b) the posterior wall was measured as the distance from to anterior wall to the epicardium surface, and (c) the interventricular septum was quantified as the distance from the surface of the left ventricle border to the right ventricle septum surface. Systolic time measurements were taken at the peak of the T-wave of the electrocardiogram. Each measurement was taken three to five times before averaging. Average values were used to calculate cardiac mass using the following equation (Deveraux et al. 1986). Weekly physical activity metabolic equivalent was calculated using a standardize activity questionnaire (Godin and Shepard, 1985) and peakV02 was measured on a cycloergometer. There were no significant differences in cardiovascular mesurements between boys and girls. Left ventricular mass was correlated (p<0.05) with size, maturation, peakV02 and physical activity metabolic equivalent. In boys, lean body mass alone explained 36% of the variance in left ventricular mass while weight was the single strongest predictor of left ventricular mass (R =0.80) in girls. Lean body mass, genital developemnt and physical activity metabolic equivalent together explained 46% and 81% in boys and girls, respectively. However, the combination of lean body mass, genital development and peakV02 (ml kgLBM^ min"') explained up to 84% of the variance in left ventricular mass in girls, but added nothing in boys. It is concluded that left ventricular mass was not statistically different between pre-adolescent boys and girls suggesting that hormonal, and therefore, body size changes in adolescence have a main effect on cardiac development and its final outcome. Although body size parameters were the strongest correlates of left ventricular mass in this pre-adolescent group of children, to our knowledge, this is the first study to report that sexual maturation, as well as physical activity and fitness, are also strong associated with left ventricular mass in pre-adolescents, especially young females. Arterial variables, such as systolic blood pressure and carotid pulse pressure, are not strong determinants of left ventricular mass in this pre-adolescent group. In general, these data suggest that although there is no gender differences in the absolute values of left ventricular mass, as children grow, the factors that determine cardiac mass differ between the genders, even in the same pre-adolescent age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spontaneous teratocarcinomas are ovarian or testicular tumors which have their origins in germ cells. The tumors contain a disorganized array of benign differentiated cells as well as an undifferentiated population of malignant stem cells, the embryonal carcinoma or EC cells. These pluripotent stem cells in tissue culture share many properties with the transient pluripotent cells of the early embryo, and might therefore serve as models for the investigation of developmental events ill vitro. The property of EC cells of prime interest in this study is an in vivo phenomenon. Certain EC cell lines are known to be regulated ill vivo and to differentiate normally in association with normal embryonic cells, resulting in chimeric mice. These mice have two genetically distinct cell populations, one of which is derived from the originally malignant EC cells. This has usually been accomplished by injection of the EC cells into the Day 3 blastocyst. In this study, the interactions between earlier stage embryos and EC cells have been tested by aggregating clumps of EC cells with Day 2 embryos. The few previous aggregation studies produced a high degree of abnormality in chimeric embryos, but the EC cells employed had known chromosomal abnormalities. In this study, two diploid EC cell lines (P19 and Pi0) were aggregated with 2.5 day mouse embryos, and were found to behave quite differently in the embryonic environment. P19 containing aggregates generally resorbed early, and the few embryos recovered at midgestation were normal and non-chimeric. Pi0 containing aggregates survived in high numbers to midgestation, and the Pi0 cells were very successful in colonizing the embryo. All these embryos were chimeric, and the contribution by the EC cells to each chimera was very high. However, these heavily chimeric embryos were all abnormal. Blastocyst injection had previously produced some abnormal embryos with high Pl0 contributions in addition to the live born mice, which had lower EC contributions. This study now adds more support to the hypothesis that high EC contributions may be incompatible with normal development. The possibility that the abnormalities were due to the mixing of temporally asynchronous embryonic cell types in the aggregates was tested by aggregating normal pluripotent cells taken from 3.5 day embryos with 2.5 day embryos. Early embryo loss was very high, and histological studies showed that the majority of these embryos died by 6.5 days development. Some embryos escaped this early death such that some healthy chimeras were recovered, in contrast to recovery of abnormal chimeric embryos following Pl0-morula aggregations, and non-chimeric embryos following P19-morula aggregations. This somewhat surprising adverse effect on development following aggregation of normal cell types suggests that there are developmental difficulties associated with the mixing of asynchronous cell types in aggregates. However, the greater magnitude of the adverse effects when the aggregates contained tumor derived cells suggests that EC cells should not be considered the complete equivalent of the pluripotent cells of the early embryo.