2 resultados para endo-lysosomaler Proteintransport

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sarco(endo)plasmic reticulum calcium ATPase (SERCA) is a transmembrane protein whose function is regulated by its immediate lipid environment (annulus). The composition of the annulus is currently unknown or it’s susceptibility to a high saturated fat diet (HSFD). Furthermore it is uncertain if HSFD can protect SERCA from thermal stress. The purpose of the study was to determine SERCA annular lipid composition, resulting impact of a HSFD, and in turn, influence on SERCA activity with and without thermal stress. The major findings were annular lipids were shorter and more saturated compared to whole homogenate and HSFD had no effect on annular lipid composition or SERCA activity with and without thermal stress. Both average chain length and unsaturation index were positively correlated with SERCA activity with and without thermal stress. These findings suggest that annular lipid composition is different than whole homogenate and its composition appears to be related to SERCA function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A^-heterocyclic carbenes (NHCs) have become the focus of much interest as ancillary ligands for transition metal catalysts in recent years. Their structural variability and strong cy-donation properties have led to the preparation of demonstrably useful organometallic catalysts. Among the three general structural types of NHCs (imidazolylidenes, imidazolinylidenes, and benzimidazolylidenes), benzimidazolylidenes are the least investigated because of the limitation of current synthetic approaches. The preparation of chiral analogues is even more challenging. Previously, our group has demonstrated an alternative approach to synthesizing benzimidazolylidenes with a tetracyclic framework in three steps from 1,10-phenanthroline. This thesis is focused on approaches to chiral benzimidazolylidenes derived from substituted 1,10-phenanthrolines. A key step in the preparation of these ligands involves a reduction of the pyridyl rings in 1,10-phenanthrolines. Chirality can be introduced to phenanthrolines before, during, or after the reduction as illustrated by three approaches: 1) de novo construction of the phenanthroline from chiral ketones with endo and exo faces to provide a degree of diastereoselectivity during subsequent reduction; 2) introduction of substituents into the 2- and 2,9- position of phenanthroline by nucleophilic aromatic substitution, followed by a reduction-resolution sequence; and 3) use of the protected octahydrophenanthroline as a substrate for chiral induction a to nitrogen.