24 resultados para doped-Er3 glass microsphere
em Brock University, Canada
Resumo:
A system comprised of a Bomem interferometer and a LT3-110 Heli-Tran cryostat was set up to measure the reflectance of materials in the mid-infrared spectral region. Several tests were conducted to ensure the consistency and reliability of the system. Silicon and Chromium, two materials with well known optical properties were measured to test the accuracy of the system, and the results were found to be in good agreement with the literature. Reflectance measurements on pure SnTe and several Pb and Mn-doped alloys were carried out. These materials were chosen because they exhibit a strong plasma edge in the mid infrared region. The optical conductivity and several related optical parameters were calculated from the measured reflectance. Very low temperature measurements were carried out in the far-infrared on Sn9SMn2Te, and the results are indicative of a spin glass phase at 0.8 K. Resistivity measurements were made at room temperature. The resistivity values were found, as expected, to decrease with increasing carrier concentration and to increase with increasing manganese concentration.
Resumo:
This study applies a Marxist theoretical paradigm to examine the working conditions of greenhouse workers in the Niagara Region, and the range of factors that bear upon the formation of their class-consciousness. The Niagara greenhouse industry represents one of the most developed horticultural regions in Canada and plays a prominent role in the local economy. The industry generates substantial revenues and employs a significant number of people, yet the greenhouse workers are paid one of the lowest rates in the region. Being classified as agricultural workers, the greenhouse employees are exempted from many provisions of federal and provincial labour regulations. Under the current provincial statutes, agricultural workers in Ontario are denied the right to organize and bargain collectively. Except for a few technical and managerial positions, the greenhouse industry employs mostly low-skilled workers who are subjected to poor working conditions that stem from the employer's attempts to adapt to larger structural imperatives of the capitalist economy. While subjected to these poor working conditions, the greenhouse workers are also affected by objectively alienated social relations and by ruling class ideological domination and hegemony. These two sets of factors arise from the inherent conflict of interests between wage-labour and capital but also militate against the development of class-consciousness. Semi-structured interviews were conducted with 12 greenhouse workers to examine the role played by their material circumstances in the formulation of their social and political views as well as the extent to which they are aware of their class location and class interests. The hegemonic notions of 'common sense' acted as impediments to formation of classconsciousness. The greenhouse workers have virtually no opportunities to access alternative perspectives that would address the issues associated with exploitation in production and offer solutions leading to 'social justice'. Fonnidable challenges confront any organized political body seeking to improve the conditions of the working people.
Resumo:
The reflectance of thin films of magnesium doped SrRu03(Mg-SR0) produced by pulsed laser deposition on SrTiOa (100) substrates has been measured at room temperature between 100 and 7500 cm~^. The films were chosen to have wide range of thickness, stoichiometry and electrical properties. As the films were very thin (less than 300 nm), and some were insulating the reflectance data shows structures due to both the film and the substrate. Hence, the data was analyzed using Kramers-Kronig constrained variational fitting (VDF) method to extract the real optical conductivity of the Mg-SRO films. Although the VDF technique is flexible enough to fit all features of the reflectance spectra, it seems that VDF could not eliminate the substrate's contribution from fllm conductivity results. Also the comparison of the two different programs implementing VDF fltting shows that this technique has a uniqueness problem. The optical properties are discussed in light of the measured structural and transport properties of the fllms which vary with preparation conditions and can be correlated with differences in stoichiometry. This investigation was aimed at checking the VDF technique and also getting answer to the question whether Mg^"*" substitutes in to Ru or Sr site. Analysis of our data suggests that Mg^+ goes to Ru site.
Resumo:
The far infrared reflectance of Sb2Te3 , Sbi.97Vo.o3Te3 and Sbi.94Cr .o6Te3 was measured near normal incidence at different temperatures (between 45K and 300K). The direct current resistivities of the above samples were also measured between the temperatures of 4K and 300K. Also Kramers Kronig (KK) analyses were performed on the reflectance spectra to obtain the optical conductivities. In the doped samples, it was observed that a phonon at 62cm-1 softens to about 55cm-1 on decreasing the temperature from 295K to 45K. Also, it was observed that the plasma frequency of the doped samples is independent of doping. The scattering rate for the vanadium doped sample was seen to be greater than that for the chromium doped sample despite the fact that vanadium impurity density is less than that of chromium. The Drude-Lorentz model fits to the KK optical conductivity show that the samples used in this work are conventional metals. Definitive measurements of the temperature dependence of the scattering rate across the ferromagnetic transition await equipment changes allowing measurements at low temperature using the mercury cadmium telluride (MCT) detector.
Resumo:
Raman scattering in the region 20 to 100 cm -1 for fused quartz, "pyrex" boro-silicate glass, and soft soda-lime silicate glass was investigated. The Raman spectra for the fused quartz and the pyrex glass were obtained at room temperature using the 488 nm exciting line of a Coherent Radiation argon-ion laser at powers up to 550 mW. For the soft soda-lime glass the 514.5 nm exciting line at powers up to 660 mW was used because of a weak fluorescence which masked the Stokes Raman spectrum. In addition it is demonstrated that the low-frequency Raman coupling constant can be described by a model proposed by Martin and Brenig (MB). By fitting the predicted spectra based on the model with a Gaussian, Poisson, and Lorentzian forms of the correlation function, the structural correlation radius (SCR) was determined for each glass. It was found that to achieve the best possible fit· from each of the three correlation functions a value of the SCR between 0.80 and 0.90 nm was required for both quartz and pyrex glass but for the soft soda-lime silicate glass the required value of the SCR. was between 0.50 and 0.60 nm .. Our results support the claim of Malinovsky and Sokolov (1986) that the MB model based on a Poisson correlation function provides a universal fit to the experimental VH (vertical and horizontal polarizations) spectrum for any glass regardless of its chemical composition. The only deficiency of the MB model is its failure to fit the experimental depolarization spectra.
Resumo:
A ~si MAS NMR study of spin-lattice relaxation behaviour in paramagnetic-doped crystalline silicates was undertaken, using synthetic magnesium orthosilicate (forsterite) and synthetic zinc orthosilicate (willemite) doped with 0.1% to 20% of Co(II), Ni(II), or CU(II), as experimental systems. All of the samples studied exhibited a longitudinal magnetization return to the Boltzmann distribution of nuclear spin states which followed a stretched-exponential function of time: Y=exp [- (tjTn) n], O<n<l For the most reliable experimental data, there is a bias toward n=O.Sj the few genuine cases of deviation from 1/2power are for dopant concentrations equal to or exceeding 2.5 percent dopant. In some cases we find agreement with theory, and observe a direct proportionality between the spin-lattice relaxation time and paramagnetic dopant ion concentration, with Tni[M2+]i=Tnj[M2+]j for a given dopant and mineral. There are many cases where this correlation is not apparent, however, and this is attributed to the structural, phase, and ion distribution complexities inherent in many of these systems.
Resumo:
We report the results of crystal structure, magnetization and resistivity measurements of Bi doped LaVO3. X-ray diffraction (XRD) shows that if doping Bi in the La site is less than ten percent, the crystal structure of La1-xBixVO3 remains unchanged and its symmetry is orthorhombic. However, for higher Bi doping (>10%) composite compounds are found where the XRD patterns are characterized by two phases: LaVO3+V2O3. Energy-dispersive analysis of the x-ray spectroscopy (EDAX) results are used to find a proper atomic percentage of all samples. The temperature dependence of the mass magnetization of pure and single phase doped samples have transition temperatures from paramagnetic to antiferromagnetic region at TN=140 K. This measurement for bi-phasic samples indicates two transition temperatures, at TN=140 K (LaVO3) and TN=170 K (V2O3). The temperature dependence of resistivity reveals semiconducting behavior for all samples. Activation energy values for pure and doped samples are extracted by fitting resistivity versus temperature data in the framework of thermal activation process.
Resumo:
Four men (unidentified) walking in tunnel wearing hard hats and carrying flashlights.
Resumo:
Consulting Engineer drawing of Sections of the Discharge Tunnel. Included in the drawing is the "cross section of tunnel with timbering" and "longitudinal section showing Timber in straight tunnel". Dated October 1902.
Resumo:
Appears to be an engineer's drawing of the Hydro Station. It is a cross-section view of the interior.
Resumo:
Plan and profile of discharge tunnel along Niagara River. The horizontal scale is 1 inch = 100 feet, the vertical scale is 1 inch = 40 feet. The drawing is dated November 7, 1902.
Resumo:
Drawing by consulting engineer dated October 19, 1901. Scale is noted as 1/4 inch = 1 foot.
Resumo:
Drawing of "Section thru Wheelpit" dated September 1925. Shows unit no.1 through unit no.11, power house floor and water surface.
Resumo:
Engineer drawing (untitled), some of the labels read "exciter chamber", "fore bay", "power house floor".
Resumo:
Four men (unknown) standing in the tunnel wearing hard hats.