2 resultados para dispersion decreasing fibers

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation of geochemistry and mineralogy of heavy metals in fine grained (<63^m) sediment of the Welland River was imdertaken to: 1) describe metal dispersion patterns relative to a source, identify minerals forming and existing at the outfall region and relate sediment particle size to chemistry; 2) to delineate sample handling, preparation and evaluate, modify and develop analytical methods for heavy metal analysis of complex environmental samples. Ajoint project between Brock University and Geoscience Laboratories was initiated to test a contaminated site of the Welland River at the base of Atlas Speciality Steels Co. Methods were developed and utilized for particle size separation and two acid extraction techniques: 1) Partial extraction; 2) Total extraction. The mineralogical assessment identified calcite, dolomite, quartz and clays. These minerals are typical of the carbonate-shale rock basement of the Niagara Peninsula. Minerals such as, mullite and ferrocolumbite were found at the outfall region. These are not typical of the local geology and are generally associated with industrial pollutants. Partial and total extraction techniques were used to characterize the sediments based on chemical distribution, elemental behaviour and analytical differences. The majority of elements were lower in concentration in the partial extraction technique; suggesting these elements are bound in an acid extractable phase (exchangeable, organic and carbonate phases). The total extraction technique yielded higher elemental concentrations taking difficult oxides and silicates into solution. Geochemical analyses of grain size separates revealed that heavy metal (Co, Ni, V, Mn, Fe, Ba) concentrations did not increase with decreasing grain size. This is a function of the anthropogenic mill scale input into the river. The background elements (Sc, Y, Sr, Mg, Al and Ti) showed an increase in concentration to the finest grain size suggesting that it is directly related to the local mineralogy and geology. Dispersion patterns ofmetals fall into two distinct categories: 1) the heavy metals (Co, Cu, Ni, Zn, V and Cr), and 2) the background elements (Be, Sc, Y, Sr, Al and Ti). The heavy metals show a marked increase in the outfall region, while the background elements show a significant decrease at the outfall. This pattern is attributed to a "dilution effect" ofthe natural sediments by the anthropogenic mill scale sediments. Multivariant statistical analysis and correlation coefficient matrix results clearly support these results and conclusions. These results indicate the outfall region ofthe Welland River is highly contaminated with to heavy metals from the industrialized area of Welland. A short distance downstream, the metal concentrations return to baseline geochemical levels. It appears, contaminants rapidly come out of suspension and are deposited in close proximity to the source. Therefore, it is likely that dredging the sediment from the river may cause resuspension of contaminated sediments, but may not distribute the sediment as far as initially anticipated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atomic mean square displacement (MSD) and the phonon dispersion curves (PDC's) of a number of face-centred cubic (fcc) and body-centred cubic (bcc) materials have been calclllated from the quasiharmonic (QH) theory, the lowest order (A2 ) perturbation theory (PT) and a recently proposed Green's function (GF) method by Shukla and Hiibschle. The latter method includes certain anharmonic effects to all orders of anharmonicity. In order to determine the effect of the range of the interatomic interaction upon the anharmonic contributions to the MSD we have carried out our calculations for a Lennard-Jones (L-J) solid in the nearest-neighbour (NN) and next-nearest neighbour (NNN) approximations. These results can be presented in dimensionless units but if the NN and NNN results are to be compared with each other they must be converted to that of a real solid. When this is done for Xe, the QH MSD for the NN and NNN approximations are found to differ from each other by about 2%. For the A2 and GF results this difference amounts to 8% and 7% respectively. For the NN case we have also compared our PT results, which have been calculated exactly, with PT results calculated using a frequency-shift approximation. We conclude that this frequency-shift approximation is a poor approximation. We have calculated the MSD of five alkali metals, five bcc transition metals and seven fcc transition metals. The model potentials we have used include the Morse, modified Morse, and Rydberg potentials. In general the results obtained from the Green's function method are in the best agreement with experiment. However, this improvement is mostly qualitative and the values of MSD calculated from the Green's function method are not in much better agreement with the experimental data than those calculated from the QH theory. We have calculated the phonon dispersion curves (PDC's) of Na and Cu, using the 4 parameter modified Morse potential. In the case of Na, our results for the PDC's are in poor agreement with experiment. In the case of eu, the agreement between the tlleory and experiment is much better and in addition the results for the PDC's calclliated from the GF method are in better agreement with experiment that those obtained from the QH theory.