15 resultados para digestive system function disorder
em Brock University, Canada
Resumo:
The human neuromuscular system is susceptible to changes within the thermal environment. Cold extrinsic temperatures can significantly reduce muscle and nervous system function and communication, which can have consequences for motor performance. A repeated measures design protocol exposed participants to a 12°C cold water immersion (CWI) up to the ankle, knee, and hip to determine the effect that reduced skin and muscle temperature had on balance and strength task execution. Although a linear reduction in the ability to perform balance tasks was seen from the control condition through to the hip CWI, results from the study indicated a significant reduction in dynamic balance (Star Excursion Balance Test reach distance) performance from only the hip CWI (P<0.05). This reduced performance could have been due to an increase in joint stiffness, increased agonist-antagonist co-contraction, and/or reduced isokinetic muscular strength. Reduced physical performance due to cold temperature could negatively impact outdoor recreational athletics.
Resumo:
Children with High-Functioning Autism (HF A) are more vulnerable to developing Obsessive Compulsive Disorder (OCD) than typically developing children and those with Low-Functioning Autism (Gadow et al., 2005). This study used a multiple baseline design across behaviours (Cooper, Heron, & Heward, 2007) to investigate if a two phase function-based Cognitive Behaviour Therapy (CBT) would decrease obsessive compulsive behaviours (OCBs) in two children ages 7 and 9 who met criteria for OCD and HF A. This multimodal treatment package consisted of treatment enhancements to meet the children's cognitive, linguistic, and social challenges associated with their HF A diagnosis, as well as a manual and accompanied children's workbook (Vause, Neil, & Feldman, in progress). In line with previous research conducted on CBT as a treatment for OCD in this population (e.g., Wood et at, 2009), the children in this study experienced clinically significant decreases in their OCBs as a result of receiving the CBT protocol.
Resumo:
Although persons with intellectual disabilities have been conceptualized as having rights to equality in Canada and internationally, there continue to be gaps in the delivery of justice when they are involved within the criminal process. The literature consistently reported that individuals with Fetal Alcohol Spectrum Disorder (FASDs) often experienced challenges within the justice system, such as difficulty understanding abstract legal concepts (Conry & Fast, 2009). In the Canadian legal system, accommodations are available to enable persons with disabilities to receive equal access to justice; however, how these are applied to persons with FASDs had not been fully explored in the literature. In this study, in-depth interviews were conducted with social service agency workers (n=10) and justice professionals (n=10) regarding their views of the challenges persons with FASDs experience in the justice system and their suggestions on the use of accommodations. The findings showed that while supports have been provided for individuals with intellectual disabilities, there has been a lack of specialized accommodations available specifically for individuals with FASDs in accessing their right to justice.
Resumo:
Children with Autism Spectrum Disorder (ASD) have restricted and repetitive behaviours (RRBs) which may be similar to obsessions and compulsions in Obsessive Compulsive Disorder (OCD). These behaviours can be intrusive and interfere in the lives of the child and their family. Preliminary studies have shown success in using adapted Cognitive Behavioural Therapy (CBT) to treat these behaviors in children with high functioning ASD. Using a hypothetical vignette, this thesis attempted to examine procedural knowledge that the children and their parents gained while participating in a CBT treatment that was evaluated in a Randomized Controlled Trial. For both parents and children, there was a significant increase in number of strategies generated from pre to post-treatment. Further, children in the experimental group generated significantly more strategies than the treatment as usual (TAU) group post-intervention. There was no significant correlation between number of strategies generated and the child’s treatment success, age, or IQ.
Resumo:
A review of the literature reveals that there are a number of children in the educational system who are characterized by Attention Deficit Disorder. Further review of the literature reveals that there are information processing programs which have had some success in increasing the learning of these children. Currently, an information processing program which is based on schema theory is being implemented in Lincoln County. Since schema theory based programs build structural, conditional, factual, and procedural schemata which assist the learner in attending to salient factors, learning should be increased. Thirty-four children were selected from a random sampling of Grade Seven classes in Lincoln County. Seventeen of these children were identified by the researcher and classroom teacher as being characterized by Attention Deficit Disorder. From the remaining population, 17 children who were not characterized by Attention Deficit Disorder were randomly selected. The data collected were compared using independent t-tests, paired t-tests, and correlation analysis. Significant differences were found in all cases. The Non-Attention Deficit Disorder children scored significantly higher on all the tests but the Attention Defici t Disorder children had a significantly higher ratio of gain between the pretests and posttests.
Resumo:
Four groups of rainbow trout, Salmo gairdneri, were acclimated to 2°, 10°, and 18°e, and to a diurnal temperature cycle (100 ± 4°C). To evaluate the influence of cycling temperatures in terms of an immediate as opposed to acclimatory response various ventilatory-cardiovascular rate functions were observed for trout, either acclimated to cycling temperatures or acclimated to constant temperatures and exposed to a diurnal temperature cycle for the first time (10° ± 4°C for trout acclimated to 10°C; 18°+ 4°C for trout acclimated to l8°e). Gill resistance and the cardiac to ventilatory rate ratio were then calculated. Following a post preparatory recovery period of 36 hr, measurements were made over a 48 hour period with the first 24 hours being at constant temperature in the case of statically-acclimated fish followed by 24 hours under cyclic temperature conditions. Trout exhibited marked changes in oxygen consumption (Vo ) with temp- 2 erature both between acclimation groups, and in response to the diurnal temperature cycle. This increase in oxygen uptake appears to have been achieved by adjustment of ventilatory and, to some extent, cardiovascular activity. Trout exhibited significant changes in ventilatory rate (VR), stroke volume (Vsv), and flow (VG) in response to temperature. Marked changes in cardiac rate were also observed. These findings are discussed in relation to their importance in convective oxygen transport via water and blood at the gills and tissues. Trout also exhibited marked changes in pressure waveforms associated with the action of the resp; ratory pumps with temperature. Mean differenti a 1 pressure increased with temperature as did gill resistance and utilization. This data is discussed in relation to its importance in diffusive oxygen transport and the conditions for gas exchange at the gills. With one exception, rainbow trout were able to respond to changes in oxygen demand and availability associated with changes in temperature by means of adjustments in ventilation, and possibly pafusion, and the conditions for gas exchange at the gills. Trout acclimated to 18°C, however, and exposed to high cyclic temperatures, showed signs of the ventilatory and cardiovascular distress problems commonly associated with low circulating levels of oxygen in the blood. It appears these trout were unable to fully meet the oxygen requirements associated with c~ling temperatures above 18°C. These findings were discussed in relation to possible limitations in the cardiovascular-ventilatory response at high temperatures. The response of trout acclimated to cycling temperatures was generally similar to that for trout acclimated to constant temperatures and exposed to cycling temperatures for the first time. This result suggested that both groups of fish may have been acclimated to a similar thermal range, regardless of the acclimation regime employed. Such a phenomenon would allow trout of either acclimation group to respond equally well to the imposed temperature cycle. Rainbow trout showed no evidence of significant diurnal rhythm in any parameters observed at constant temperatures (2°, 10°, and 18° C), and under a 12/12 light-dark photoperiod regime. This was not taken to indicate an absence of circadian rhythms in these trout, but rather a deficiency in the recording methods used in the study.
Resumo:
Developmental coordination disorder (DCD) is a motor coordination disorder that is characterized by impairment of motor skills which leads to challenges with performing activities of daily living. Children with DCD have been shown to be less physically active and have increased body fatness. This is an important finding since a sedentary lifestyle and obesity are risk factors for cardiovascular disease. One indicator of cardiovascular health is baroreflex sensitivity (BRS), which is a measure of short term BP regulation that is accomplished through changes in HR. Diminished BRS is predictive of cardiovascular morbidity and mortality. The purpose of this study was to investigate BRS in 117 children aged 12 to 13 years with probable DCD (pOCO) and their matched controls with normal coordination. Following 15 minutes of supine rest, five minutes of continuous beat-by-beat blood pressure (Finapres) and RR interval were recorded (standard ECG). Spectral indices were computed using Fast Fourier Transform and transfer function analysis was used to compute BRS. High frequency and low frequency power spectral areas were set to 0.15-0.6 Hz and 0.04-0.15 Hz, respectively. BRS was compared between groups with an independent t-test and the difference was not significant. It is likely that a difference in BRS was not seen between groups since the difference in BMI between groups was small. As well, differences in BRS may not have manifested yet at this early age. However, the cardiovascular health of this population still deserves attention since differences in body composition and fitness were found between groups.
Resumo:
Research indicates that Obsessive-Compulsive Disorder (OCD; DSM-IV-TR, American Psychiatric Association, 2000) is the second most frequent disorder to coincide with Autism Spectrum Disorder (ASD; Leyfer et aI., 2006). Excessive collecting and hoarding are also frequently reported in children with ASD (Berjerot, 2007). Although functional analysis (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) has successfully identified maintaining variables for repetitive behaviours such as of bizarre vocalizations (e.g., Wilder, Masuda, O'Connor, & Baham, 2001), tics (e.g., Scotti, Schulman, & Hojnacki, 1994), and habit disorders (e.g., Woods & Miltenberger, 1996), extant literature ofOCD and functional analysis methodology is scarce (May et aI., 2008). The current studies utilized functional analysis methodology to identify the types of operant functions associated with the OCD-related hoarding behaviour of a child with ASD and examined the efficacy of function-based intervention. Results supported hypotheses of automatic and socially mediated positive reinforcement. A corresponding function-based treatment plan incorporated antecedent strategies and differential reinforcement (Deitz, 1977; Lindberg, Iwata, Kahng, and DeLeon, 1999; Reynolds, 1961). Reductions in problem behaviour were evidenced through use of a multiple baseline across behaviours design and maintained during two-month follow-up. Decreases in symptom severity were also discerned through subjective measures of treatment effectiveness.
Resumo:
Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge.
Resumo:
Rats produce ultrasonic vocalizations that can be categorized into two types of ultrasonic calls based on their sonographic structure. One group contains 22-kHz ultrasonic vocalization (USVs), characterized by relatively constant (flat) frequency with peak frequency ranging from 19 to 28-kHz, and a call duration ranging between 100 – 3000 ms. These vocalization can be induced by cholinomimetic agents injected into the ascending mesolimbic cholinergic system that terminates in the anterior hypothalamic-preoptic area (AH-MPO) and lateral septum (LS). The other group of USVs contains 50-kHz USVs, characterized by high peak frequency, ranging from 39 to 90-kHz, short duration ranging from 10-90 ms, and varying frequency and complex sonographic morphology. These vocalizations can be induced by dopaminergic agents injected into the nucleus accumbens, the target area for the mesolimbic dopaminergic system. 22-kHz USVs are emitted in situations that are highly aversive, such as proximity of a predator or anticipation of a foot shock, while 50 kHz USVs are emitted in rewarding and appetitive situations, such as juvenile play behaviour or anticipation of rewarding electrical brain stimulation. The activities of these two mesolimbic systems were postulated to be antagonistic to each other. The current thesis is focused on the interaction of these systems indexed by emission of relevant USVs. It was hypothesized that emission of 22 kHz USVs will be antagonized by prior activation of the dopaminergic system while emission of 50 kHz will be antagonized by prior activation of the cholinergic system. It was found that injection of apomorphine into the shell of the nucleus accumbens significantly decreased the number of carbachol-induced 22 kHz USVs from both AH-MPO and LS. Injection of carbachol into the LS significantly decreased the number of apomorphine-induced 50 kHz USVs from the shell of the nucleus accumbens. The results of the study supported the main hypotheses that the mesolimbic dopaminergic and cholinergic systems function in antagonism to each other.
Resumo:
Picture Exchange Communication System (PECS) is an augmentative and alternative communicative system that improves communication and decreases problem behaviors in children with Developmental Disabilities and Autism. The mediator model is a validated approach that clinicians use to train parents to perform evidence-based interventions. Parental non-adherence to treatment recommendations is a documented problem. This qualitative study investigated clinician-perceived factors that influence parental adherence to PECS recommendations. Three focus groups (n=8) were conducted with Speech Language Pathologists and Behavior Therapists experienced in providing parents with PECS recommendations. Constant comparison analysis was used. In general, clinicians believed that PECS was complex to implement. Thirty-one bridges were identified to overcome complexity. Twenty-two barriers and 6 other factors also impacted parental adherence. Strategies to address these factors were proposed based on a review of the literature. Future research will be performed to validate these findings using parents and a larger sample size.
Resumo:
Researchers have conceptualized repetitive behaviours in individuals with Autism Spectrum Disorder (ASD) on a continuum oflower-Ievel, motoric, repetitive behaviours and higher-order, repetitive behaviours that include symptoms ofOCD (Hollander, Wang, Braun, & Marsh, 2009). Although obsessional, ritualistic, and stereotyped behaviours are a core feature of ASD, individuals with ASD frequently experience obsessions and compulsions that meet DSM-IV-TR (American Psychiatric Association, 2000) criteria for Obsessive-Compulsive Disorder (OCD). Given the acknowledged difficulty in differentiating between OCD and Autism-related obsessive-compulsive phenomena, the present study uses the term Obsessive Compulsive Behaviour (OCB) to represent both phenomena. This study used a multiple baseline design across behaviours and ABC designs (Cooper, Heron, & Heward, 2007) to investigate if a 9-week Group Function-Based Cognitive Behavioural Therapy (CBT) decreased OCB in four children (ages 7 - 11 years) with High Functioning Autism (HFA). Key treatment components included traditional CBT components (awareness training, cognitive-behavioural skills training, exposure and response prevention) as well as function-based assessment and intervention. Time series data indicated significant decreases in OCBs. Standardized assessments showed decreases in symptom severity, and increases in quality of life for the participants and their families. Issues regarding symptom presentation, assessment, and treatment of a dually diagnosed child are discussed.
Resumo:
Imaging studies have shown reduced frontal lobe resources following total sleep deprivation (TSD). The anterior cingulate cortex (ACC) in the frontal region plays a role in performance monitoring and cognitive control; both error detection and response inhibition are impaired following sleep loss. Event-related potentials (ERPs) are an electrophysiological tool used to index the brain's response to stimuli and information processing. In the Flanker task, the error-related negativity (ERN) and error positivity (Pe) ERPs are elicited after erroneous button presses. In a Go/NoGo task, NoGo-N2 and NoGo-P3 ERPs are elicited during high conflict stimulus processing. Research investigating the impact of sleep loss on ERPs during performance monitoring is equivocal, possibly due to task differences, sample size differences and varying degrees of sleep loss. Based on the effects of sleep loss on frontal function and prior research, it was expected that the sleep deprivation group would have lower accuracy, slower reaction time and impaired remediation on performance monitoring tasks, along with attenuated and delayed stimulus- and response-locked ERPs. In the current study, 49 young adults (24 male) were screened to be healthy good sleepers and then randomly assigned to a sleep deprived (n = 24) or rested control (n = 25) group. Participants slept in the laboratory on a baseline night, followed by a second night of sleep or wake. Flanker and Go/NoGo tasks were administered in a battery at 1O:30am (i.e., 27 hours awake for the sleep deprivation group) to measure performance monitoring. On the Flanker task, the sleep deprivation group was significantly slower than controls (p's <.05), but groups did not differ on accuracy. No group differences were observed in post-error slowing, but a trend was observed for less remedial accuracy in the sleep deprived group compared to controls (p = .09), suggesting impairment in the ability to take remedial action following TSD. Delayed P300s were observed in the sleep deprived group on congruent and incongruent Flanker trials combined (p = .001). On the Go/NoGo task, the hit rate (i.e., Go accuracy) was significantly lower in the sleep deprived group compared to controls (p <.001), but no differences were found on false alarm rates (i.e., NoGo Accuracy). For the sleep deprived group, the Go-P3 was significantly smaller (p = .045) and there was a trend for a smaller NoGo-N2 compared to controls (p = .08). The ERN amplitude was reduced in the TSD group compared to controls in both the Flanker and Go/NoGo tasks. Error rate was significantly correlated with the amplitude of response-locked ERNs in control (r = -.55, p=.005) and sleep deprived groups (r = -.46, p = .021); error rate was also correlated with Pe amplitude in controls (r = .46, p=.022) and a trend was found in the sleep deprived participants (r = .39, p =. 052). An exploratory analysis showed significantly larger Pe mean amplitudes (p = .025) in the sleep deprived group compared to controls for participants who made more than 40+ errors on the Flanker task. Altered stimulus processing as indexed by delayed P3 latency during the Flanker task and smaller amplitude Go-P3s during the Go/NoGo task indicate impairment in stimulus evaluation and / or context updating during frontal lobe tasks. ERN and NoGoN2 reductions in the sleep deprived group confirm impairments in the monitoring system. These data add to a body of evidence showing that the frontal brain region is particularly vulnerable to sleep loss. Understanding the neural basis of these deficits in performance monitoring abilities is particularly important for our increasingly sleep deprived society and for safety and productivity in situations like driving and sustained operations.
Resumo:
The capacity for all living cells to sense and interact with their environment is a necessity for life. In highly evolved, eukaryotic species, like humans, signalling mechanisms are necessary to regulate the function and survival of all cells in the organism. Synchronizing systemic signalling systems at the cellular, organ and whole-organism level is a formidable task, and for most species requires a large number of signalling molecules and their receptors. One of the major types of signalling molecules used throughout the animal kingdom are modulatory substances (e.x. hormones and peptides). Modulators can act as chemical transmitters, facilitating communication at chemical synapses. There are hundreds of circulating modulators within the mammalian system, but the reason for so many remains a mystery. Recent work with the fruit fly, Drosophila melanogaster demonstrated the capacity for peptides to modulate synaptic transmission in a neuron-specific manner, suggesting that peptides are not simply redundant, but rather may have highly specific roles. Thus, the diversity of peptides may reflect cell-specific functions. The main objective of my doctoral thesis was to examine the extent to which neuromodulator substances and their receptors modulate synaptic transmission at a cell-specific level using D. melanogaster. Using three different modulatory substances, i) octopamine - a biogenic amine released from motor neuron terminals, ii) DPKQDFMRFa - a neuropeptide secreted into circulation, and iii) Proctolin - a pentapeptide released both from motor neuron terminals and into circulation, I was able to investigate not only the capacity of these various substances to work in a cell-selective manner, but also examine the different mechanisms of action and how modulatory substances work in concert to execute systemic functionality . The results support the idea that modulatory substances act in a circuit-selective manner in the central nervous system and in the periphery in order to coordinate and synchronize physiologically and behaviourally relevant outputs. The findings contribute as to why the nervous system encodes so many modulatory substances.
Resumo:
Every day we make decisions that have repercussions. Sometimes the effects are immediate and intended; other times the effects might be unintended or might not be apparent for years. As parents or educators, part of our role is to support the development of children’s decision-making skills, helping them to develop patterns of adaptive decision-making that will serve them well in their current lives and into the future. Part of successful decision-making involves self-control, a system served by the brain’s executive functions (EF). This involves the ability to put aside immediate reactions and base decisions on a variety of important considerations. Social-cognitive development, the ongoing improvement of the ability to get along with others and to understand others’ emotions, expressions, motivations, and intents, relies, to a large degree, on the same EF systems. The current paper explores the interaction of these two factors (the role of EF in social-cognitive development), explores the research to determine the most effective approaches to improving both factors, and develops a handbook providing activities for educators to use while supporting the growth of both EF and social-cognitive skills. Results of a needs assessment reveal that the majority (59%) of educators surveyed had never used a social skills improvement program in their classrooms, while a full 95% believed that social skills are important or very important for a student’s academic success.