2 resultados para degraded areas
em Brock University, Canada
Resumo:
Sediment relationships observed during geological mapping in southeastern Ontario indicate a relatively simple deglaciation history for the area during late Wisconsin time. The ice from the north (part of the Lake Simcoe lobe) and the Lake Ontario ice lobe, which were coalesced during most of late Wisconsin time, initially separated along the crest of the Oak Ridges Moraine. Available data indicate that the Oak Ridges Moraine is composed primarily of sediments pre-late Wisconsin in age capped by late Wisconsin till and interlobate deposits. Retreat of the northern ice was relatively steady and resulted in the deposition of the Dummer Moraines, a facies of the drumlinized till to the south. Retreat of the Lake Ontario ice lobe into the Lake Ontario basin was interrupted by a re-advance which covered the southeastern half of the map area. The northern ice had already retreated from the area by this time. The Lake Ontario lobe was fed through the St. Lawrence Valley, indicating that the Ottawa Valley was ice filled at this time. High level glacial lakes fronted the ice during deglaciation. These waters quickly fell to low levels as the ice retreated from the St. Lawrence Valley, opening lower outlets.
Resumo:
In light of the fact that literature on toxicity of heavy metals in non-acidified
freshwater systems is sparse, this project was initiated to conduct an environmental
assessment of Lake Gibson. Chemistry of soils from adjacent areas and vineyards in the
region provide a comparative background database. Water quality determinations were used
to identify and highlight areas of environmental concern within the Lake Gibson watershed.
A Shelby Corer was used to obtain 66 sediment cores from Lake Gibson. These were
sectioned according to lithology and color to yield 298 samples. A suite of 122 soil samples
was collected in the region and vicinity of Lake Gibson. All were tested for metals and
some for Total Petroleum Hydrocarbons (TPH). Evaluation of the results leads to the
following conclusions:
1. Metal concentrations ofAI, Cd, Cu, Cr, Pb, Ni, Fe and Zn in soils from the Niagara
Region are well below background limits set by the Ministry of the Environment
and Energy (MOEE) for provincial soils.
2. There is a spatial and depth difference for some of the metals within the various
soils. The Cr, Ni and Pb contents of soils vary throughout the region (p