2 resultados para d-amphetamine
em Brock University, Canada
Resumo:
Fifty kHz rat vocalizations are theorized to reflect a positive affective state, and index the reward value of stimuli (Knutson, Burgdorf & Panksepp, 2002; Panksepp & Burgdorf, 2003; Brudzynski,2005). Previous studies have identified the neurochemical substrate of this behaviour to be dependent on dopaminergic activity at the nucleus accumbens shell (Burgdorf, Knutson, Panksepp & Ikemoto, 2001; Thompson, Leonard & Brudzynski, 2006). The utilization of d-amphetamine (a non-selective dopamine agonist) in these studies does not address the specific dopamine receptor types involved. The present study aims to identify the role of the D2- like family of receptors in the nucleus accumbens shell in the production of 50 kHz vocalizations in adult rats. Single injections of quinpirole in a saline vehicle were administered to the nucleus accumbens shell of 57 rats, and the number of 50 kHz vocalizations were recorded. An inverted V-shaped relationship was found between quinpirole dose (0.5 ~g, 3 ~g, 6 ~g, 1 0 ~g and 20 ~g, all in 0.2~1 saline) and the mean number of 50 kHz calls produced. Quinpirole successfully elicited significantly more 50 kHz calls than did a saline control at the 6 ~g dose, as did 7 ~g/0.2 ~l of d-amphetamine injections into the same brain site. To test whether a selective D2 antagonist could reverse elicited 50 kHz calling, double injections were given that used either saline or raclopride as a pretreatment before quinpirole injections. Saline followed by 6 ~g/0.2 ~l of quinpirole elicited significantly more 50 kHz vocalizations than did a double injection of saline, while pretreatment with an equimolar dose of raclopride reduced elicited calls to control levels. Raclopride was also used as a pretreatment of 7 ~g/0.2 ~l d-amphetamine, which elicited significantly fewer 50 kHz vocalizations than saline followed by amphetamine, replicating the finding of Thompson, Leonard & Brudzynski (2006).Subcutaneous injections of 0.5 mg/kg and 1.5 mg/kg of quinpirole produced a similar number of 50 kHz vocalizations as subcutaneous injection of saline. Wider dose ranges may be explored in fiiture research. Thus, direct activation of the Da-like receptors in the nucleus accumbens shell was sufficient to elicit 50 kHz vocalizations in adult rats, an effect which was reversed with selective local antagonism of Da-like receptors. The Da-like receptor family also appears necessary for pharmacological activation of 50 kHz calling, as d-amphetamine was no longer able to effectively elicit these vocalizations from the nucleus accumbens shell when the Da-receptor family was antagonized with raclopride. The acoustic parameters of elicited vocalizations remained typical of rat 50 kHz calls. Detailed analyses of the acoustic characteristics of elicited calls indicated significant increases in call duration and peak frequency across drug injection groups, particularly among quinpirole dose groups. The implications of these findings are not yet clear, but may represent an important direction for future research into the coding of semiotic content into affective signals in rats.
Resumo:
The developmental remodelling of motivational systems that underlie drug dependence and addiction may account for the greater frequency and severity of drug abuse in adolescence compared to adulthood. Recent advances in animal models have begun to identify the morphological and the molecular factors that are being remodelled, but little is known about the culmination of these factors in altered sensitivity to psycho stimulant drugs, like amphetamine, in adolescence. Amphetamine induces potent locomotor activating effects in rodents through increased dopamine release in the mesocorticolimbic dopamine system, which makes locomotor activity a useful behavioural marker of age differences in amphetamine sensitivity. The aim of the thesis was to investigate the neural basis for age differences in amphetamine sensitivity with a focus on the nucleus accumbens and the medial prefrontal cortex, which initiate and regulate amphetamine-induced locomotor activity, respectively. In study 1, I found pre- and post- pubertal adolescent rats to be less active (i.e., hypoactive) than adults to a first injection of 0.5, but not of 1.5, mg/kg of intraperitonealy (i.p.) administered amphetamine. Although initially hypoactive, only adolescent rats exhibited an increase in activity to a second injection of amphetamine given 24 h later, indicating that adolescents may be more sensitive to the rapid changes in amphetamineinduced plasticity than adults. Given that the locomotor activating effects of amphetamine are initiated in the nucleus accumbens, age differences in response to direct injections of amphetamine into this brain region were investigated in study 2. In contrast to i.p. injections, adolescents were more active than adults when amphetamine was given directly into the nucleus accumbens, indicating that hypo activity may be attributed to the development of regulatory regions outside of the accumbens. The medial prefrontal cortex (mPFC) is a key regulator of the locomotor activating effects of amphetamine that undergoes extensive remodelling in adolescence. In study 3, I found that an i.p. injection of 1.5, and not of 0.5, mg/kg of amphetamine resulted in a high expression of c-fos, a marker of neural activation, in the pre limbic mPFC only in pre-pubertal adolescent rats. This finding suggests that the ability of adolescent rats to overcome hypo activity at the 1.5 mg/kg dose may involve greater activation of the prelimbic mPFC compared to adulthood. In support of this hypothesis, I found that pharmacological inhibition of prelimbic D 1 dopamine receptors disrupted the locomotor activating effects of the 1.5 mg/kg dose of amphetamine to a greater extent in adolescent than in adult rats. In addition, the stimulation of prelimbic D 1 dopamine receptors potentiated locomotor activity at the 0.5 mg/kg dose of amphetamine only in adolescent rats, indicating that the prelimbic D1 dopamine receptors are involved in overcoming locomotor hypoactivity during adolescence. Given my finding that the locomotor activating effects of amphetamine rely on slightly different mechanisms in adolescence than in adulthood, study 4 was designed to determine whether the lasting consequences of drug use would also differ with age. A short period of pre-treatment with 0.5 mg/kg of amphetamine in adolescence, but not in adulthood, resulted in heightened sensitivity to an injection of amphetamine given 30 days after the start of the procedure, when adolescent rats had reached adulthood. The finding of an age-specific increase in amphetamine sensitivity is consistent with evidence for increased risk for addiction when drug use is initiated in adolescence compared to adulthood in people (Merline et aI., 2002), and with the hypothesis that adolescence is a sensitive period of development.