2 resultados para current terminating structure
em Brock University, Canada
Resumo:
Polyglutamine is a naturally occurring peptide found within several proteins in neuronal cells of the brain, and its aggregation has been implicated in several neurodegenerative diseases, including Huntington's disease. The resulting aggregates have been demonstrated to possess ~-sheet structure, and aggregation has been shown to start with a single misfolded peptide. The current project sought to computationally examine the structural tendencies of three mutant poly glutamine peptides that were studied experimentally, and found to aggregate with varying efficiencies. Low-energy structures were generated for each peptide by simulated annealing, and were analyzed quantitatively by various geometry- and energy-based methods. According to the results, the experimentally-observed inhibition of aggregation appears to be due to localized conformational restraint placed on the peptide backbone by inserted prolines, which in tum confines the peptide to native coil structure, discouraging transition towards the ~sheet structure required for aggregation. Such knowledge could prove quite useful to the design of future treatments for Huntington's and other related diseases.
Resumo:
Subjective well-being (SWB) refers to how individuals evaluate and experience their lives in positive ways, and encompasses global judgments of life satisfaction (LS), as well as the frequency of positive and negative affect (PA and NA, respectively) in one’s life. To inform the current ambiguity concerning the structure of SWB, the aim of this Masters thesis was to evaluate the structure of SWB based on whether the three components of SWB change together or independently naturally, over time and following experimental manipulation. In Study 1, associations among changes in LS, PA, and NA were evaluated using a longitudinal approach tracking natural changes in the components over periods of three months and three years. Results indicated that change in one component was related to change in the other two components. In Study 2, an experimental design was used to manipulate each SWB component individually, and evaluate changes in all three components following each manipulation. Manipulation materials designed to target LS only were effective (i.e., led to heightened focus on LS, and not PA or NA) and created an increase in both LS and PA. Manipulation materials designed to target PA and NA only were not effective (i.e., led to heightened focus on the target component, as well as on LS). Furthermore, in both studies the strength of an individual’s SWB (assessed in terms of structural consistency and structural ambivalence in Study 1 and Study 2, along with subjective ambivalence in Study 2) did not consistently moderate the degree to which changes in the components were associated with one another. Together, these findings indicate that the structure of SWB may be complex and dynamic, rather than static. Alternatively, the components of SWB may not be easily manipulated in isolation of one another. Implications for existing structural models of SWB are discussed.