1 resultado para crystalline silicon
em Brock University, Canada
Resumo:
A Czerny Mount double monochromator is used to measure Raman scattered radiation near 90" from a crystalline, Silicon sample. Incident light is provided by a mixed gas Kr-Ar laser, operating at 5145 A. The double monochromator is calibrated to true wavelength by comparison of Kr and Ar emission Une positions (A) to grating position (A) display [1]. The relationship was found to be hnear and can be described by, y = 1.219873a; - 1209.32, (1) where y is true wavelength (A) and xis grating position display (A). The Raman emission spectra are collected via C"*""*" encoded software, which displays a mV signal from a Photodetector and allows stepping control of the gratings via an A/D interface. [2] The software collection parameters, detector temperature and optics are optimised to yield the best quality spectra. The inclusion of a cryostat allows for temperatmre dependent capabihty ranging from 4 K to w 350 K. Silicon Stokes temperatm-e dependent Raman spectra, generally show agreement with Uterature results [3] in their frequency haxdening, FWHM reduction and intensity increase as temperature is reduced. Tests reveal that a re-alignment of the double monochromator is necessary before spectral resolution can approach literature standard. This has not yet been carried out due to time constraints.