2 resultados para correlation energy

em Brock University, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

New density functionals representing the exchange and correlation energies (per electron) are employed, based on the electron gas model, to calculate interaction potentials of noble gas systems X2 and XY, where X (and Y) are He,Ne,Ar and Kr, and of hydrogen atomrare gas systems H-X. The exchange energy density functional is that recommended by Handler and the correlation energy density functional is a rational function involving two parameters which were optimized to reproduce the correlation energy of He atom. Application of the two parameter function to other rare gas atoms shows that it is "universal"; i. e. ,accurate for the systems considered. The potentials obtained in this work compare well with recent experimental results and are a significant improvement over those from competing statistical modelS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cr ystal structure of the compound 2-benzoylethylidene-3-(2,4- dibromophenyl)-2,3-dihydro-5-phenyl-l,3,4-thiadiazole* C23H16Br2NZOS (BRMEO) has been determined by using three dimensiona l x-ray diffraction data. The crys tal form is monoclinic, space group P21/c, a = 17.492(4), o -.t' 0 R 0 b =: 16.979(1), c = 14.962(1) A, "X. =o= 90 ',= 106.46(1) , z = 8, graphite-monochromatized Mo~ rad iation, Jl= 0.710J3~, D = 1.62g/cc and o D = 1.65g/cc. The data were col lected on ~ Nonius CAD-4 c diffractometer. The following atoms were made anisotropic: Br, S, N, 0, C7, and C14-C16 for each i ndependent molecu le ; the rest were left isotropic. For 3112 independent refl ec tions with F > 6G\F), R == 0.057. The compound has two independent molecules within the asymmetric unit. Two different conformers were observed which pack well together. /l The S---O interaction distances of 2.493(6) and 2 . 478(7) A were observed for molecules A and B respectively. These values are consistent with earlier findings for 2-benzoylmethylene-3-(2,4-dibromophenyl)- ~~ 2,3-dihydro-5-phenyl-l,3,4-thiadiazole C22H14Br2N20S (BRPHO) and 2-benzoylpropylidene-3-(2,4-dibromophenyl)-2,3-dihydroiii ,'r 5-phenyl-l,3,4-thiadiazole C24H18Br2N20S (BRPETO ) where S---O distances are l ess than the van der Waals (3.251\) but greater than those expected for () a single bond (1.50A). From the results and the literature it appears obvious that the energy/reaction coordinate pathway has a minimum between the end structures (the mono- and bicyclic compounds). * See reference (21) for nomenclature.