7 resultados para corn yield
em Brock University, Canada
Resumo:
Two still images from the "Corn Girl" television commercial featuring the slogan "Butter It"
Resumo:
Television script for commercial "Corn Girl" featuring the song "Mellow Yellow"
Resumo:
A high performance liquid chromatographic method employing two columns connected in series and separated~y·a.switching valve has been developed for the analysis of the insecticide/ nematicide oxamyl (methyl-N' ,N'-dimethyl-N-[(methylcarbamoyl) oxy]-l-thiooxarnimidate) and two of its metabolites. A variation of this method involving two reverse phase columns was employed to monitor the persistence and translocation of oxamyl in treated peach seedlings. It was possible to simultaneously analyse for oxamyl and its corresponding oxime (methyl-N',N'-dimethyl-N-hydroxy-l-thiooxamimidate}, a major metabolite of oxamyl in plants, without prior cleanup of the samples. The method allowed detection of 0.058 pg oxamyl and 0.035 p.g oxime. On treated peach leaves oxamyl was found to dissipate rapidly during the first two-week period, followed by a period of slow decomposition. Movement of oxamyl or its oxime did not occur in detectable quantities to untreated leaves or to the root or soil. A second variation of the method which employed a size exclusion column as·the first column and a reverse phase column as the second was used to monitor the degradation of oxamyl in treated, planted corn seeds and was suitable for simultaneous analysis of oxamyl, its oxime and dimethylcyanoformamide (DMCF), a metabolite of oxamyl. The method allowed detection of 0.02 pg oxamyl, 0.02 p.g oxime and 0.005 pg DMCF. Oxamyl was found to persist for a period of 5 - 6 weeks, which is long enough to permit oxamyl seedtreatment to be considered as a potential means of protecting young corn plants from nematode attack. Decomposition was found to be more rapid in unsterilized soil than in sterililized soil. DMCF was found to have a nematostatic effect at high concentrations ( 2,OOOpprn), but at lower concentrations no effect on nematode mobility was observed. Oxamyl, on the other hand, was found to reduce the mobility of nematodes at concentrations down to 4 ppm.
Resumo:
A simple method was developed for treating corn seeds with oxamyl. It involved soaking the seeds to ensure oxamyl uptake, centrifugation to draw off excess solution, and drying under a stream of air to prevent the formation of fungus. The seeds were found to have an even distribution of oxamyl. Seeds remained fungus-free even 12 months after treatment. The highest nonphytotoxic treatment level was obtained by using a 4.00 mg/mL oxamyl solution. Extraction methods for the determination of oxamyl (methyl-N'N'-dimethyl-N-[(methylcarbamoyl)oxy]-l-thiooxamimidate), its oxime (methyl-N',N'-dimethyl-N-hydroxy-1-thiooxamimidate), and DMCF (N,N-dimethyl-1-cyanoformanade) in seed" root, and soil were developed. Seeds were processed by homogenizing, then shaking in methanol. Significantly more oxamyl was extracted from hydrated seeds as opposed to dry seeds. Soils were extracted by tumbling in methanol; recoveries range~ from 86 - 87% for oxamyl. Root was extracted to 93% efficiency for oxamyl by homogenizing the tissue in methanol. NucharAttaclay column cleanup afforded suitable extracts for analysis by RP-HPLC on a C18 column and UV detection at 254 nm. In the degradation study, oxamyl was found to dissipate from the seed down into the soil. It was also detected in the root. Oxime was detected in both the seed and soil, but not in the root. DMCF was detected in small amounts only in the seed.
Resumo:
Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge.
Resumo:
Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by a myriad of factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site. It was hypothesized that winter hardiness would be influenced by certain terroir factors , specifically that vines with low water status [more negative leaf water potential (leaf ψ)] would be more winter hardy than vines with high water status (more positive leaf ψ). Twelve different vineyard blocks (six each of Riesling and Cabernet franc) throughout the Niagara Region in Ontario, Canada were chosen. Data were collected during the growing season (soil moisture, leaf ψ), at harvest (yield components, berry composition), and during the winter (bud LT50, bud survival). Interpolation and mapping of the variables was completed using ArcGIS 10.1 (ESRI, Redlands, CA) and statistical analyses (Pearson’s correlation, principal component analysis, multilinear regression) were performed using XLSTAT. Clear spatial trends were observed in each vineyard for soil moisture, leaf ψ, yield components, berry composition, and LT50. Both leaf ψ and berry weight could predict the LT50 value, with strong positive correlations being observed between LT50 and leaf ψ values in eight of the 12 vineyard blocks. In addition, vineyards in different appellations showed many similarities (Niagara Lakeshore, Lincoln Lakeshore, Four Mile Creek, Beamsville Bench). These results suggest that there is a spatial component to winter injury, as with other aspects of terroir, in the Niagara region.
Resumo:
For the past 20 years, researchers have applied the Kalman filter to the modeling and forecasting the term structure of interest rates. Despite its impressive performance in in-sample fitting yield curves, little research has focused on the out-of-sample forecast of yield curves using the Kalman filter. The goal of this thesis is to develop a unified dynamic model based on Diebold and Li (2006) and Nelson and Siegel’s (1987) three-factor model, and estimate this dynamic model using the Kalman filter. We compare both in-sample and out-of-sample performance of our dynamic methods with various other models in the literature. We find that our dynamic model dominates existing models in medium- and long-horizon yield curve predictions. However, the dynamic model should be used with caution when forecasting short maturity yields