7 resultados para construction of PTO

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative ease to concentrate and purify adenoviruses, their well characterized mid-sized genome, and the ability to delete non-essential regions from their genome to accommodate foreign gene, made adenoviruses a suitable candidate for the construction of vectors. The use of adenoviral vectors in gene therapy, vaccination, and as a general vector system for expressing foreign genes have been documented for some time. In this study, the objective was to rescue a BAV3 E1 or E3 recombinant vector carrying the kanamycin resistant gene, a dominant selectable marker with useful applications in studying vectored gene expression in mammalian cells. To accomplish the objective of this study, more information about BAV3 DNA sequences was required in order to make the manipulation of the virus genome accessible. Therefore, sequencing of the BAV3 genome from 1 1 .7% to 30.8% was carried out. Analysis of the determined sequences revealed the primary structure of important viral gene products coded by E2 including BAV3 DNA pol and precursor to terminal protein. Comparative analysis of these proteins with their counterparts from human and non human adenoviruses revealed important insights as to the evolutionary lineage of BAV3. In order to insert the kanamycin resistance gene in either E1 or E3, it was necessary to delete BAV3 sequences to accommodate the foreign gene so as not to exceed the limit of the packaging capacity of the virus. To construct a recombinant BAV3 in which a foreign gene was inserted in the deleted E1 region, an E1 shuttle vector was constructed. This involved the deletion from the viral sequences a region between 1.3% to 9% and inserting the kanamycin resistance gene to replace the deletion. The E1 shuttle vector contained the left (0%- 53.9%) segment of the genome and was expected to generate BAV3 recombinants that can be grown and propagated in cells that can complement the missing E1 functions. To construct a similar shuttle vector for E3 deletion, DNA sequences extending from 78.9% to 82.5% (1281 bp) were deleted from within the E3 region that had been cloned into a plasmid vector. The deleted region corresponds to those that have been shown to be non-essential for viral replication in cell culture. The resulting plasmid was used to construct another recombinant plasmid with BAV3 DNA sequences extending from 37.1% to 100% and with a deletion of E3 sequences that were replaced by kanamycin resistance gene. This shuttle plasmid was used in cotransfections with digested viral DNA in an attempt to rescue a recombinant BAV3 carrying the kanamycin resistance gene to replace the deleted E3. In spite of repeated attempts of transfection, El or E3 recombinant BAV3 were not isolated. It seems that other approaches should be applied to make a final conclusion on BAV3 infectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding large deletion correcting codes is an important issue in coding theory. Many researchers have studied this topic over the years. Varshamov and Tenegolts constructed the Varshamov-Tenengolts codes (VT codes) and Levenshtein showed the Varshamov-Tenengolts codes are perfect binary one-deletion correcting codes in 1992. Tenegolts constructed T codes to handle the non-binary cases. However the T codes are neither optimal nor perfect, which means some progress can be established. Latterly, Bours showed that perfect deletion-correcting codes have a close relationship with design theory. By this approach, Wang and Yin constructed perfect 5-deletion correcting codes of length 7 for large alphabet size. For our research, we focus on how to extend or combinatorially construct large codes with longer length, few deletions and small but non-binary alphabet especially ternary. After a brief study, we discovered some properties of T codes and produced some large codes by 3 different ways of extending some existing good codes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brock’s Monument is owned by Parks Canada and maintained by the Niagara Parks Commission in collaboration with the Friends of Fort George and Niagara National Historic Sites. It is located in Queenston Heights Park atop the Niagara Escarpment. On March 14, 1815, Parliament passed an act to erect a monument to the memory of General Isaac Brock. A design by engineer Francis Hall was selected. He envisioned a 135 ft. tall Tuscan column, made out of stone with a winding staircase inside. By the spring of 1824, work had begun on the monument. In June of that year, the cornerstone was laid and William Lyon Mackenzie was in attendance at the ceremony. It was on October 13th, 1824 (the anniversary of Brock’s death) that 6000 people traveled to Queenston to inter the remains of Brock and Lieutenant-Colonel Macdonell. This was the second burial for both. After 3 years the tower had reached 135 feet, but there was no inscription at the base, the fence around the observation deck had not been installed and there was no statue of Brock. Hall submitted a plan to finish the statue, but he was turned down and a simple ornament was placed where the Brock statue should have been. A massive blast of gunpowder destroyed the monument in 1840. It is alleged that an American sympathizer with the Upper Canada Rebellion set off the blast. Brock and Macdonell’s bodies were reburied in the Hamilton Family Cemetery in Queenston. The present monument was rebuilt in 1853. William Thomas (designer of St. Michael’s Cathedral in Toronto) was the architect. Brock and Macdonell were once again laid to rest in separate vaults at the statue. In 1968, Brock’s Monument was declared a national historical site. In 2005, it was closed to the public due to safety concerns, but it reopened in 2010. Source: http://www.thecanadianencyclopedia.com/articles/brocks-monument-queenston-heights

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article focuses on the following: Cattle Perception, How to prevent Balking, Solid Fences, Flight Zone, Curved Race more Efficient, Curved Race and Crowd Pen Dimensions, Loading Ramps, Working Corral for a Large Ranch, Squeeze Chutes and Headgates, Calf Tables, Artificial Insemination Chute, New Restraint Ideas, Dipping Vats, Bruise and Injury Prevention, Washable Facilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Letter containing specifications for the construction of the Port Robinson and Thorold macadamized road sent to Matthews from S.D. Woodruff (3 pages, handwritten), Aug. 25, 1855.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Letter regarding an estimate on the amount of money needed for the construction of the road. The salutation is “Sir”. There is no signature, May 28, 1855.