5 resultados para computational study

em Brock University, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Dudding group is interested in the application of Density Functional Theory (DFT) in developing asymmetric methodologies, and thus the focus of this dissertation will be on the integration of these approaches. Several interrelated subsets of computer aided design and implementation in catalysis have been addressed during the course of these studies. The first of the aims rested upon the advancement of methodologies for the synthesis of biological active C(1)-chiral 3-methylene-indan-1-ols, which in practice lead to the use of a sequential asymmetric Yamamoto-Sakurai-Hosomi allylation/Mizoroki Heck reaction sequence. An important aspect of this work was the utilization of ortho-substituted arylaldehyde reagents which are known to be a problematic class of substrates for existing asymmetric allylation approaches. The second phase of my research program lead to the further development of asymmetric allylation methods using o-arylaldehyde substrates for synthesis of chiral C(3)-substituted phthalides. Apart from the de novo design of these chemistries in silico, which notably utilized water-tolerant, inexpensive, and relatively environmental benign indium metal, this work represented the first computational study of a stereoselective indium-mediated process. Following from these discoveries was the advent of a related, yet catalytic, Ag(I)-catalyzed approach for preparing C(3)-substituted phthalides that from a practical standpoint was complementary in many ways. Not only did this new methodology build upon my earlier work with the integrated (experimental/computational) use of the Ag(I)-catalyzed asymmetric methods in synthesis, it provided fundamental insight arrived at through DFT calculations, regarding the Yamamoto-Sakurai-Hosomi allylation. The development of ligands for unprecedented asymmetric Lewis base catalysis, especially asymmetric allylations using silver and indium metals, followed as a natural extension from these earlier discoveries. To this end, forthcoming as well was the advancement of a family of disubstituted (N-cyclopropenium guanidine/N-imidazoliumyl substituted cyclopropenylimine) nitrogen adducts that has provided fundamental insight into chemical bonding and offered an unprecedented class of phase transfer catalysts (PTC) having far-reaching potential. Salient features of these disubstituted nitrogen species is unprecedented finding of a cyclopropenium based C-H•••πaryl interaction, as well, the presence of a highly dissociated anion projected them to serve as a catalyst promoting fluorination reactions. Attracted by the timely development of these disubstituted nitrogen adducts my last studies as a PhD scholar has addressed the utility of one of the synthesized disubstituted nitrogen adducts as a valuable catalyst for benzylation of the Schiff base N-diphenyl methylene glycine ethyl ester. Additionally, the catalyst was applied for benzylic fluorination, emerging from this exploration was successful fluorination of benzyl bromide and its derivatives in high yields. A notable feature of this protocol is column-free purification of the product and recovery of the catalyst to use in a further reaction sequence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The computational study, and in particular the density functional theory (DFT) study of the organocatalytic α-chlorination-aldol reaction and the chiral backbone Frustrated Lewis Pair (FLP) system served as a valuable tool for experimental purposes. This thesis describes methods to consider different transition states of the proline- catalyzed α-chlorination aldol reaction to determine the reasonable transition state in the reaction between the enamine and α-chloro aldehydes. Moreover, the novel intramolecular Frustrated Lewis pair based on a chiral backbone for the asymmetric hydrogenation of imines and enamines was designed and the ability of hydrogen splitting by this new FLP system was examined by computational modeling and calculating the hydrogen activation energy barrier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photosynthesis is a process in which electromagnetic radiation is converted into chemical energy. Photosystems capture photons with chromophores and transfer their energy to reaction centers using chromophores as a medium. In the reaction center, the excitation energy is used to perform chemical reactions. Knowledge of chromophore site energies is crucial to the understanding of excitation energy transfer pathways in photosystems and the ability to compute the site energies in a fast and accurate manner is mandatory for investigating how protein dynamics ef-fect the site energies and ultimately energy pathways with time. In this work we developed two software frameworks designed to optimize the calculations of chro-mophore site energies within a protein environment. The first is for performing quantum mechanical energy optimizations on molecules and the second is for com-puting site energies of chromophores in a fast and accurate manner using the polar-izability embedding method. The two frameworks allow for the fast and accurate calculation of chromophore site energies within proteins, ultimately allowing for the effect of protein dynamics on energy pathways to be studied. We use these frame-works to compute the site energies of the eight chromophores in the reaction center of photosystem II (PSII) using a 1.9 Å resolution x-ray structure of photosystem II. We compare our results to conflicting experimental data obtained from both isolat-ed intact PSII core preparations and the minimal reaction center preparation of PSII, and find our work more supportive of the former.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The natural abundance of the N-heterocycle containing compounds has pushed the synthetic community toward the invention of new synthetic methods that result in the structural diversity of N-heterocycles. Among this, is the efficient and highly selective diamine mediated asymmetric lithiation process. Amongst the diamine chiral ligands, (-)-sparterine, which is a naturally occurring alkaloid proved to be an efficient one. Many successful, good yielding and highly selective lithiation reactions have been accomplished with the mediation by this chiral diamine base. Although, there are some examples of experimental and theoretical mechanistic studies in the literature, there is a lack of detailed understanding as to how it exactly induces the chirality. In this thesis is described a systematic investigation of how (-)-sparteine influences the stereoselectivity in the course of asymmetric lithiation reaction. This led us to the establishment of the function of A-ring’s β-CH2 effect and D-ring effect. Consequently, the importance of the A-ring and D-ring portions of (-)-sparteine in the stereoselectivity is unraveled. Another part of this thesis deals with the asymmetric lithiation of BF3-activated N,N- dimethylaminoferrocene in the presence of (1R, 2R)-N1,N2-bis(3,3-dimethylbutyl)-N1,N2-dimethylcyclohexane-1,2-diamine ( a (R,R)-TMCDA surrogate) with i-PrLi. Computational findings were in full accord with the experimental observations. Subsequently, the theoretically provided insights into the mechanism of the reaction were exploited in computational design of a new ligand. Unfortunately, the outcome of this design was not experimentally robust and an updated approach towards a successful design was explained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many real-world optimization problems contain multiple (often conflicting) goals to be optimized concurrently, commonly referred to as multi-objective problems (MOPs). Over the past few decades, a plethora of multi-objective algorithms have been proposed, often tested on MOPs possessing two or three objectives. Unfortunately, when tasked with solving MOPs with four or more objectives, referred to as many-objective problems (MaOPs), a large majority of optimizers experience significant performance degradation. The downfall of these optimizers is that simultaneously maintaining a well-spread set of solutions along with appropriate selection pressure to converge becomes difficult as the number of objectives increase. This difficulty is further compounded for large-scale MaOPs, i.e., MaOPs possessing large amounts of decision variables. In this thesis, we explore the challenges of many-objective optimization and propose three new promising algorithms designed to efficiently solve MaOPs. Experimental results demonstrate the proposed optimizers to perform very well, often outperforming state-of-the-art many-objective algorithms.