2 resultados para chelate

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation of chelated difluoroboron cations (DD)BF2+, where DD is a saturated polydentate tertiary-amine or polydentate aromatic ligand, has been systematically studied by using multinuclear solution and solid state nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. Three new methods of synthesis of (DD)BF2+ cations are reported, and compared with the previous method of reacting a chelating donor with Et20.BF3. The methods most effective for aromatic donors such as 1,1O-phenanthroline are ineffective for saturated polydentate tertiary-amines like N,N,N' ,Nil ,Nil-pentamethyldiethylenetriamine. Polydentate tertiary-amine donors that form 5-membered rings upon bidentate chelation were found to chelate effectively when the BF2 source contained two leaving groups (a heavy halide and a Lewis base such as pyridine =pyr or isoxazole =ISOX), i.e., pyr.BF2X (X = CI or Br), ISOX.BF2X and (pyr)2BF2+. Those that would form 6membered rings upon chelation do not chelate by any of the four methods. Polydentate aromatic ligands chelate effectively when the BF2 source contained a weak Lewis base, e.g., ISOX.BF3, ISOX.BF2X and Et20.BF3. Bidentate chelation by polydentate tertiaryamine and aromatic donors leads to nmr parameters that are significantly different then their (D)2BF2+ relatives (D =monod~ntate t-amines or pyridines). The chelated haloboron cations (DD)BFCI+, and (DD)BFBr+ were generated from D.BFX2 adducts for all ligands that form BF2+ cations above. In addition, the (DD)BCI2+ and (DD)BBr2+ cations were formed from D.BX3 adducts by the chelating aromatic ligands, except for the aromatic ligand 1,8-bis(dimethylamino)naphthalene, which formed only the (DD)BF2+ cation, apparently due to its extreme steric hindrance. Chelation by a donor is a two-step reaction. For polydentate tertiary-amine ligands, the two rates appear to be very dependent on the two possible leaving groups on the central boron atom. The order of increasing ease of displacement for the donors was: pyr < Cl < Br < ISOX. The rate of chelation by polydentate aromatic ligands appears to be dependent on the displacement of the first ligand from the boron. The order of increasing ease of displacement for the donors was: pyr < CI < ISOX ~ Br < Et20.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The employment of the bridging/chelating Schiff bases, N-salicylidene-4-methyl-o-aminophenol (samphH2) and N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in nickel cluster chemistry has afforded eight polynuclear Ni(II) complexes with new structural motifs, interesting magnetic and optical properties, and unexpected organic ligand transformations. In the present thesis, Chapter 1 deals with all the fundamental aspects of polynuclear metal complexes, molecular magnetism and optics, while research results are reported in Chapters 2 and 3. In the first project (Chapter 2), I investigated the coordination chemistry of the organic chelating/bridging ligand, N-salicylidene-4-methyl-o-aminophenol (samphH2). The general NiII/tBuCO2-/samphH2 reaction system afforded two new tetranuclear NiII clusters, namely [Ni4(samph)4(EtOH)4] (1) and [Ni4(samph)4(DMF)2] (2), with different structural motifs. Complex 1 possessed a cubane core while in complex 2 the four NiII ions were located at the four vertices of a defective dicubane. The nature of the organic solvent was found to be of pivotal importance, leading to compounds with the same nuclearity, but different structural topologies and magnetic properties. The second project, the results of which are summarized in Chapter 3, included the systematic study of a new optically-active Schiff base ligand, N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in NiII cluster chemistry. Various reactions between NiX2 (X- = inorganic anions) and nacbH2 were performed under basic conditions to yield six new polynuclear NiII complexes, namely (NHEt3)[Ni12(nacb)12(H2O)4](ClO4) (3), (NHEt3)2[Ni5(nacb)4(L)(LH)2(MeOH)] (4), [Ni5(OH)2(nacb)4(DMF)4] (5), [Ni5(OMe)Cl(nacb)4(MeOH)3(MeCN)] (6), (NHEt3)2[Ni6(OH)2(nacb)6(H2O)4] (7), and [Ni6(nacb)6(H2O)3(MeOH)6] (8). The nature of the solvent, the inorganic anion, X-, and the organic base were all found to be of critical importance, leading to products with different structural topologies and nuclearities (i.e., {Ni5}, {Ni6} and {Ni12}). Magnetic studies on all synthesized complexes revealed an overall ferromagnetic behavior for complexes 4 and 8, with the remaining complexes being dominated by antiferromagnetic exchange interactions. In order to assess the optical efficiency of the organic ligand when bound to the metal centers, photoluminescence studies were performed on all synthesized compounds. Complexes 4 and 5 show strong emission in the visible region of the electromagnetic spectrum. Finally, the ligand nacbH2 allowed for some unexpected organic transformations to occur; for instance, the pentanuclear compound 5 comprises both nacb2- groups and a new organic chelate, namely the anion of 5-chloro-2-[(3-hydroxy-4-oxo-1,4-dihydronaphthalen-1-yl)amino]benzoic acid. In the last section of this thesis, an attempt to compare the NiII cluster chemistry of the N-naphthalidene-2-amino-5-chlorobenzoic acid ligand with that of the structurally similar but less bulky, N-salicylidene-2-amino-5-chlorobenzoic acid (sacbH2), was made.