4 resultados para checkpoint kinase 2
em Brock University, Canada
Resumo:
Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate oxidation in skeletal muscle. PD H is deactivated by a set of PD H kinases (PD K 1-4) with PDK2 and 4 being the predominant isoforms in skeletal muscle. PDK2 is highly sensitive to pyruvate inhibition, and is the most abundant isoform, while PDKI and 4 protein content are normally lower. This study examined the PDK isoform content and PDHa activation in muscle at rest and 10 and 40 Hz stimulation from PDK2 knockout (PDK2KO) mice to delineate the role of PDK2 in activating the PDH complex during low and moderate intensity muscle contraction. PDHa activity was lower in PDK2KO mice during contraction while total PDK actitvity was -4 fold lower. PDK4 protein was not different, however PDKI partially compensated for the lack of PDK2 and was -56% higher than WT. PDKI is a very potent inhibitor of the PDH complex due to its phosphorylation site specificity and allosteric regulation. These results suggest that the site specificity and allosteric regulatory properties of the individual PDK isoforms are more important than total PDK activity in determining transformation of the complex and PDHa activity during acute muscle contraction.
Resumo:
University, 2006 Dr. Sandra J. Peters Pyruvate dehydrogenase (PDH) catalyses the decarboxylation of pyruvate, to form acetyl-CoA. PDH activity is down-regulated by intrinsic PDH kinases (predominantly PDK2 and PDK4 isoforms), but the understanding of the PDK isoform distribution and adaptation to nutritional stresses has been restricted to mixed mitochondrial populations, and not delineated between subsarcolemmal (SS) and intermyofibrillar (IMF) subpopulations. SS and IMF mitochondria exhibit distinct morphological and biochemical properties; however the functional differences are not well understood. This study investigated the effect of fed (FED) versus 48 h total foodrestriction (FR) on rat red gastrocnemius muscle PDK2 and 4 isoform content in SS and IMF mitochondria. PDK4 content was ~3-5 fold higher in SS mitochondria compared to IMF (p=0.001), and increased with FR -3-4- fold in both subpopulations (p<0.001). PDK2 was -2.5-4 fold higher in SS mitochondria compared to IMF (p=0.001), but PDK2 was unaltered with FR. Citrate synthase activity (|imol/min/mg mitochondrial protein) was not different between either subpopulation. As well there were no significant differences between mitochondrial subpopulations in PDH complex components in both fed and FR states. These results demonstrate that there is a markedly higher content of both PDK isofonns in SS compared to IMF mitochondria. Although PDK2 does not increase in either subpopulation in response to FR, PDK4 increases to a similar extent in both SS and IMF after 48 h food-restriction.
Resumo:
Recombinant Adenoviruses (Ads) have been shown to have potential applications in three areas: gene therapy, high level protein expression and recombinant vaccines.' At least three different locations within the Ad genome can be deleted and subsequently used for the insertion of foreign sequences. These include the Early 3 (E3), Early 1 (E1) and Early 4 (E4) regions. Viral vectors of this type have been well studied in Human Ads 2 and 5, however one has not yet been constructed for Bovine Adenovirus Type 2 (BAV2). The E3 region is located between 76.6 and 86 m.u. on the r-strand and is transcribed in a rightward direction. The gene products of the Early 3 region (E3) have been shown to be non-essential for viral replication, in vitro, but are required for host immunosurveillance. This study represents the cloning and reconstitution of a BAV2 E3 deletion mutant. A deletion of 1800bp was made within the E3 region of BAV2 and the thymidine kinase gene was subsequently inserted in the deleted area . . The plasmid pdlE3-4tk1 (23.4Kbp) was constructed and used to to facilitate homologous recombination with the wild type BAV2 to produce a mutant. Southern Blotting and Hybridization results suggest the presence of a BAV2 E3 deletion mutant with thymidine kinase sequences present. The E4 region of Human Adenovirus types 2 and 5 is located at the extreme right end of the genome (91.3 map units - 99.1 map units) and is transcribed in a leftward direction giving rise to a complicated set of differentially spliced mRNAs. Essentially there are 7 open reading frames (ORFs) encoding for at least 7 polypeptides. The gene products encoded by the E4 region have been shown to be essential for the expression of late viral genes, host cell shutoff and normal viral growth. We have cloned and sequenced the right end segment between 90.5 map units and 100 map units of the BAV2 genome. The results show several open reading frames which encode polypeptides exhibiting homology to three polypeptides encoded by the E4 region of human adenovirus type 2. These include the 14kDa protein encoded by ORF1, the 34kDa protein encoded by ORF6 and the 13kDa protein encoded by ORF3. The nucleotide sequence, restriction enzyme map, and ORF map of the E4 region could be very useful in future molecular manipulation of this region and could possibly explain the slow growth rate of BAV2 in MDBK cells.
Resumo:
The time course for the reversal of the adaptive increase in pyruvate dehydrogenase kinase (PDK) activity following a 6d high fat diet (HP: 4.2 ± 0.2 % carbohydrate; 75.6 ± 0.4 % fat; 19.5 ± 0.8 % protein) was investigated in human skeletal muscle (vastus lateralis). HF feeding increased PDK activity by 44% (from 0.081 ± 0.025 min"' to 0.247 ± 0.025 mm\p < 0.05). Following carbohydrate re-feeding, (88% carbohydrate; 5% fat; 7% protein), PDK activity had returned to baseline (0.111 ± 0.014 min"') within 3h of re-feeding. The active fraction of pyruvate dehydrognease (PDHa) was depressed following 6d of the HF diet (from 0.89 ± 0.21 mmol/min/kg WW to 0.32 ± 0.05 mmol/min/kg ww,p <0.05) and increased to pre-HF levels by 45 min of post re-feeding (0.74 ±0.19 mmol/min/kg ww) and remained elevated for 3h. Western blotting analysis of the PDK isoforms, PDK4 and PDK2, revealed a 31% increase in PDK4 protein content following the HF diet, with no change in PDK2 protein. This adaptive increase in PDK4 protein content was reversed with carbohydrate re-feeding. It was concluded that the adaptive up-regulation in PDK activity and PDK4 protein content was fiilly reversed by 3h following carbohydrate re-feeding.