3 resultados para cardiac muscle
em Brock University, Canada
Resumo:
Interactions of photoperiod and temperature upon waterelectrolyte balance were examined in rainbow trout acclimated to six combinations of two photoperiods {18h light: 6h dark, o 6h light: l8h dark) and three temperatures (2, 10 and 18 C). The influence of temperature and photoperiod upon plasma, skeletal muscle, cardiac muscle and liver levels of sodium, potassium, magnesi.um, calcium, chloride, water content, water distribution and cellular ion concentrations was determined by a one way analysis of variance. Significant (p < 0.05 or better) temperature effects at common photoperiods were observed in 70% of the analyses performed, showing no bias toward either photoperiod. Significant photoperiod effects occured in 57% of the analyses performed at common temperatures. The influence of photoperiod was most prevalent at reduced temperatures. Potassium and magnesium appeared to be particularly thermosensitive, while sodium and calcium were the most photosensitive of the electrolytes. The ionic composition of all tissues studied were relatively thermosensitive, with liver apparently being the most sensitive. On the other hand; the ionic composition of skeletal and cardiac muscle appear to be the mos.t photosensitive of the tissues examined. Water content and distribution in skeletal muscle and liver were significantly influenced by temperature in 50% of the analyses performed showing a very strong bias toward UwinterU animals. Photoperiod effects were significant in 56% of the water parameters measured with a strong bias toward the two lower temperatures. Body weight was of significant influence in 16% of the 174 analyses performed. These data are discussed in terms of the effect of temperature upon ionregulatory mechanisms and the possible impact of photoperiod variations on endocrine systems influencing water-electrolyte metabolism.
Resumo:
The primary objective of this investigation was that of providing a comprehensive tissue-by-tissue assessment of water-electrolyte status in thermally-acclimated rainbow trout, Salmo gairdneri. To this end levels of water and the major ions, sodium, chloride and potassium were evaluated in the plasma, at three skeletal muscle sites, and in cardiac muscle, liver, spleen, gut and brain of animals acclimated to 2°, 10° and 18°C. The occurrence of possible seasonal variations in water-electrolyte balance was evaluated by sampling sununer and late fall-early winter populations of trout. On the basis of values for water and electrolyte content, estimates of extracellular and cellular phase volumes, cellular electrolyte concentrations and Nernst equilibrium potentials were made. Since accurate assessment of the extracellular phase volume is critical in the estimation of cellular electrolyte concentrations and parameters based on assumed cellular ion levels, [14 C]-polyethylene glycol-4000, which is assumed to be confined to the extracellular space, was employed to provide comparisons with various ion-defined spaces (H20~~s, H20~~/K and H20~~s). Subsequently, the ion-defined space yielding the most realistic estimate of extracellular phase volume for each tissue was used in cellular electrolyte calculations. Water and electrolyte content and distribution varied with temperature. Tissues, such as liver, spleen and brain appeared to be the most thermosensitive, whereas skeletal and cardiac muscle and gut tissue were less influenced. 'Summer' series trout appeared to be more capable of maintaining their water- electrolyte balance than the ~fall-winter' series animals. i The data are discussed in terms of their possible effect on maintenance of appropriate cellular metabolic and electrophysiological functions.
Resumo:
This thesis investigated the modulation of dynamic contractile function and energetics of work by posttetanic potentiation (PTP). Mechanical experiments were conducted in vitro using software-controlled protocols to stimulate/determine contractile function during ramp shortening, and muscles were frozen during parallel incubations for biochemical analysis. The central feature of this research was the comparison of fast hindlimb muscles from wildtype and skeletal myosin light chain kinase knockout (skMLCK-/-) mice that does not express the primary mechanism for PTP: myosin regulatory light chain (RLC) phosphorylation. In contrast to smooth/cardiac muscles where RLC phosphorylation is indispensable, its precise physiological role in skeletal muscle is unclear. It was initially determined that tetanic potentiation was shortening speed dependent, and this sensitivity of the PTP mechanism to muscle shortening extended the stimulation frequency domain over which PTP was manifest. Thus, the physiological utility of RLC phosphorylation to augment contractile function in vivo may be more extensive than previously considered. Subsequent experiments studied the contraction-type dependence for PTP and demonstrated that the enhancement of contractile function was dependent on force level. Surprisingly, in the absence of RLC phosphorylation, skMLCK-/- muscles exhibited significant concentric PTP; consequently, up to ~50% of the dynamic PTP response in wildtype muscle may be attributed to an alternate mechanism. When the interaction of PTP and the catchlike property (CLP) was examined, we determined that unlike the acute augmentation of peak force by the CLP, RLC phosphorylation produced a longer-lasting enhancement of force and work in the potentiated state. Nevertheless, despite the apparent interference between these mechanisms, both offer physiological utility and may be complementary in achieving optimal contractile function in vivo. Finally, when the energetic implications of PTP were explored, we determined that during a brief period of repetitive concentric activation, total work performed was ~60% greater in wildtype vs. skMLCK-/- muscles but there was no genotype difference in High-Energy Phosphate Consumption or Economy (i.e. HEPC: work). In summary, this thesis provides novel insight into the modulatory effects of PTP and RLC phosphorylation, and through the observation of alternative mechanisms for PTP we further develop our understanding of the history-dependence of fast skeletal muscle function.