4 resultados para boiling

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I - Fluorinated Compounds A method has been developed for the extraction, concentration, and determination of two unique fluorinated compounds from the sediments of Lake Ontario. These compounds originated from a common industrial landfill, and have been carried to Lake Ontario by the Niagara River. Sediment samples from the Mississauga basin of Lake Ontario have been evaluated for these compounds and a depositional trend was established. The sediments were extracted by accelerated solvent extraction (ASE) and then underwent clean-up, fractionation, solvent exchange, and were concentrated by reduction under nitrogen gas. The concentrated extracts were analyzed by gas chromatography - electron capture negative ionization - mass spectrometry. The depositional profile determined here is reflective of the operation of the landfill and shows that these compounds are still found at concentrations well above background levels. These increased levels have been attributed to physical disturbances of previously deposited contaminated sediments, and probable continued leaching from the dumpsite. Part II - Polycyclic Aromatic Hydrocarbons Gas chromatography/mass spectrometry is the most common method for the determination of polycyclic aromatic hydrocarbons (PAHs) from various matrices. Mass discrimination of high-boiling compounds in gas chromatographic methods is well known. The use of high-boiling injection solvents shows substantial increase in the response of late-eluting peaks. These solvents have an increased efficiently in the transfer of solutes from the injector to the analytical column. The effect of I-butanol, I-pentanol, cyclopentanol, I-hexanol, toluene and n-octane, as injection solvents, was studied. Higher-boiling solvents yield increased response for all PAHs. I -Hexanol is the best solvent, in terms of P AH response, but in this solvent P AHs were more susceptible to chromatographic problems such as peak splitting and tailing. Toluene was found to be the most forgiving solvent in terms of peak symmetry and response. It offered the smallest discrepancies in response, and symmetry over a wide range of initial column temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Factors affecting the detennination of PAHs by capillary GC/MS were studied. The effect of the initial column temperature and the injection solvent on the peak areas and heights of sixteen PAHs, considered as priority pollutants, USillg crosslinked methyl silicone (DB!) and 5% diphenyl, 94% dimethyl, 1% vinyl polysiloxane (DBS) columns was examined. The possibility of using high boiling point alcohols especially butanol, pentanol, cyclopentanol, and hexanol as injection solvents was investigated. Studies were carried out to optimize the initial column temperature for each of the alcohols. It was found that the optimum initial column temperature is dependent on the solvent employed. The peak areas and heights of the PAHs are enhanced when the initial column temperature is 10-20 c above the boiling point of the solvent using DB5 column, and the same or 10 C above the boiling point of the solvent using DB1 column. Comparing the peak signals of the PAHs using the alcohols, p-xylene, n-octane, and nonane as injection solvents, hexanol gave the greatest peak areas and heights of the PAHs particularly the late-eluted peaks. The detection limits were at low pg levels, ranging from 6.0 pg for fluorene t9 83.6 pg for benzo(a)pyrene. The effect of the initial column temperature on the peak shape and the separation efficiency of the PARs was also studied using DB1 and DB5 columns. Fronting or splitting of the peaks was obseIVed at very low initial column temperature. When high initial column temperature was used, tailing of the peaks appeared. Great difference between DB! and.DB5 columns in the range of the initial column temperature in which symmetrical.peaks of PAHs can be obtained is observed. Wider ranges were shown using DB5 column. Resolution of the closely-eluted PAHs was also affected by the initial column temperature depending on the stationary phase employed. In the case of DB5, only the earlyeluted PAHs were affected; whereas, with DB1, all PAHs were affected. An analytical procedure utilizing solid phase extraction with bonded phase silica (C8) cartridges combined with GC/MS was developed to analyze PAHs in water as an alternative method to those based on the extraction with organic solvent. This simple procedure involved passing a 50 ml of spiked water sample through C8 bonded phase silica cartridges at 10 ml/min, dried by passing a gentle flow of nitrogen at 20 ml/min for 30 sec, and eluting the trapped PAHs with 500 Jll of p-xylene at 0.3 ml/min. The recoveries of PAHs were greater than 80%, with less than 10% relative standard deviations of nine determinations. No major contaminants were present that could interfere with the recognition of PAHs. It was also found that these bonded phase silica cartridges can be re-used for the extraction of PAHs from water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this thesis was to study factors related to the development of Brassica juncea as a sustainable nematicide. Brassica juncea is characterized by the glycoside (glucosinolate) sinigrin. Various methods were developed for the determination of sinigrin in Brassica juncea tissue extracts. Sinigrin concentrations in plant tissues at various stages of growth were monitored. Sinigrin enzymatically breaks down into allylisothiocyanate (AITC). AITC is unstable in aqueous solution and degradation was studied in water and in soil. Finally, the toxicity of AITC against the root-lesion nematode (Pratylenchus penetrans) was determined. A method was developed to extract sinigrin from whole Brassica j uncea tissues. The optimal time of extraction wi th boiling phosphate buffer (0.7mM, pH=6.38) and methanol/water (70:30 v/v) solutions were both 25 minutes. Methanol/water extracted 13% greater amount of sinigrin than phosphate buffer solution. Degradation of sinigrin in boiling phosphate buffer solution (0.13%/minute) was similar to the loss of sinigrin during the extraction procedure. The loss of sinigrin from boiling methanol/water was estimated to be O.Ol%/minute. Brassica juncea extract clean up was accomplished by an ion-pair solid phase extraction (SPE) method. The recovery of sinigrin was 92.6% and coextractive impurities were not detected in the cleaned up extract. Several high performance liquid chromatography (HPLC) methods were developed for the determination of sinigrin. All the developed methods employed an isocratic mobile phase system wi th a low concentration of phosphate buffer solution, ammonium acetate solution or an ion-pair reagent solution. A step gradient system was also developed. The method involved preconditioning the analytical column with phosphate buffer solution and then switching the mobile phase to 100% water after sample injection.Sinigrin and benzyl-glucosinolate were both studied by HPLC particle beam negative chemical ionization mass spectrometry (HPLCPB- NCI-MS). Comparison of the mass spectra revealed the presence of fragments arising from the ~hioglucose moiety and glucosinolate side-chain. Variation in the slnlgrin concentration within Brassica juncea plants was studied (Domo and Cutlass cuItivars). The sinigrin concentration in the top three leaves was studied during growth of each cultivar. For Cutlass, the minimum (200~100~g/g) and maximum (1300~200~g/g) concentrations were observed at the third and seventh week after planting, respectively. For Domo, the minimum (190~70~g/g) and maximum (1100~400~g/g) concentrations were observed at the fourth and eighth week after planting, respectively. The highest sinigrin concentration was observed in flower tissues 2050±90~g/g and 2300±100~g/g for Cutlass and Domo cultivars, respectively. Physical properties of AITC were studied. The solubility of AITC in water was determined to be approximately 1290~g/ml at 24°C. An HPLC method was developed for the separation of degradation compounds from aqueous AITC sample solutions. Some of the degradation compounds identified have not been reported in the literature: allyl-thiourea, allyl-thiocyanate and diallyl-sulfide. In water, AITC degradation to' diallyl-thiourea was favored at basic pH (9.07) and degradation to diallyl-sulfide was favored at acidic pH (4 . 97). It wap necessary to amend the aqueous AITC sample solution with acetonitrile ?efore injection into the HPLC system. The acetonitrile amendment considerably improved AITC recovery and the reproducibility of the results. The half-life of aqueous AITC degradation at room temperature did not follow first-order kinetics. Beginning with a 1084~g/ml solution, the half-life was 633 hours. Wi th an ini tial AITC concentration of 335~g/ml the half-life was 865 hours. At 35°C the half-life AITC was 76+4 hours essentially independent of the iiisolution pH over the range of pH=4.97 to 9.07 (1000~g/ml). AITC degradation was also studied in soil at 35°C; after 24 hours approximately 75% of the initial AITC addition was unrecoverable by water extraction. The ECso of aqueous AITC against the root-lesion nematode (Pratylenchus penetrans) was determined to be approximately 20~g/ml at one hour exposure of the nematode to the test solution. The toxicological study was also performed with a myrosinase treated Brassica juncea extract. Myrosinase treatment of the Brassica juncea extract gave nearly quantitative conversion of sinigrin into AITC. The myrosinase treated extract was of the same efficacy as an aqueous AITC solution of equivalent concentration. The work of this thesis was focused upon understanding parameters relevant to the development of Brassica juncea as a sustainable nematicide. The broad range of experiments were undertaken in support of a research priority at Agriculture and Agri-Food Canada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Factors involved in the determination of PAHs (16 priority PAHs as an example) and PCBs (10 PCB congeners, representing 10 isomeric groups) by capillary gas chromatography coupled with mass spectrometry (GC/MS, for PAHs) and electron capture detection (GC/ECD , for PCBs) were studied, with emphasis on the effect of solvent. Having various volatilities and different polarities, solvent studied included dichloromethane, acetonitrile, hexan e, cyclohexane, isooctane, octane, nonane, dodecane, benzene, toluene, p-xylene, o-xylene, and mesitylene. Temperatures of the capillary column, the injection port, the GC/MS interface, the flow rates of carrier gas and make-up gas, and the injection volume were optimized by one factor at a time method or simplex optimization method. Under the optimized conditions, both peak height and peak area of 16 PAHs, especially the late-eluting PAHs, were significantly enhanced (1 to 500 times) by using relatively higher boiling point solvents such as p-xylene and nonane, compared with commonly used solvents like benzene and isooctane. With the improved sensitivity, detection limits of between 4.4 pg for naphthalene and 30.8 pg for benzo[g,h,i]perylene were obtained when p-xylene was used as an injection solvent. Effect of solvent on peak shape and peak intensity were found to be greatly dependent on temperature parameters, especially the initial temperature of the capillary column. The relationship between initial temperature and shape of peaks from 16 PAHs and 10 PCBs were studied and compared when toluene, p-xylene, isooctane, and nonane were used as injection solvents. If a too low initial temperature was used, fronting or split of peaks was observed. On the other hand, peak tailing occurred at a too high initial column temperature. The optimum initial temperature, at which both peak fronting and tailing were avoided and symmetrical peaks were obtained, depended on both solvents and the stationary phase of the column used. On a methyl silicone column, the alkane solvents provided wider optimum ranges of initial temperature than aromatic solvents did, for achieving well-shaped symmetrical GC peaks. On a 5% diphenyl: 1% vinyl: 94% dimethyl polysiloxane column, when the aromatic solvents were used, the optimum initial temperature ranges for solutes to form symmetrical peaks were improved to a similar degree as those when the alkanes were used as injection solvents. A mechanism, based on the properties of and possible interactions among the analyte, the injection solvent, and the stationary phase of the capillary column, was proposed to explain these observations. The effect of initial temperature on peak height and peak area of the 16 PAHs and the 10 PCBs was also studied. The optimum initial temperature was found to be dependent on the physical properties of the solvent used and the amount of the solvent injected. Generally, from the boiling point of the solvent to 10 0C above its boiling point was an optimum range of initial temperature at which cthe highest peak height and peak area were obtained.