9 resultados para biologically active molecules

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deoxy derivative of pancratistatin 1.10 was prepared in good yield through the use of a [4+2] Diels-Alder cycloaddition and Bischler-Napieralski cyclization approach. The Bischler-Napieralski cyclization was shown to yield two additional side products 2.9, 2.10, however, under slightly modified hydrolysis conditions, the tetracyclic product 2.11 was obtained exclusively in greater than 84% yield. Initial screening of the di-hydroxylatgd derivative, and the other complementary pair analogue 1.10' previously prepared in our laboratories gave interesting results. Both of these compounds were shown to exhibit cytostatic activity; the mono-alcohol was marginally active while the di-hydroxylated analogue proved to be more potent although one to two magnitudes less potent than pancratistatin itself Human tumour cell line assay results indicated that the di-hydroxylated derivative exhibited selective cytotoxic inhibition in the following cell lines: non-small cell lung cancer line NCI-H226 (ED50 - 0.65 ^g/mL), leukemia cell lines CCRF-CEM (ED30 = 0.55 Hg/mL) and HL-60(TB) (ED50 = 0.89^ig/mL). Our results demonstrated that the pharmacophore is not a mono-alcohol, and that the minimum pharmacophore contains the hydroxyl group at the C4 position in addition to either, or both, of the hydroxyl groups present at C2 and C3.' The minimum pharmacophore has been narrowed to only three possibilities which are current synthetic targets in several research groups. The controlled Grignard addition to the tartaric acid derived bis-Weinreb amide 1.25 afforded a direct entry to a host of 1,4-diflferentiated tartaric acid derived intermediates (2.12-2.18). This potentially usefiil methodology was demonstrated through the efficient synthesis of the naturally occurring lactone 2.23, which bears the inherent syn-dio\ subunit. Based on this result, a similar approach to the synthesis of syn-dio\ bearing natural products looks very promising? A direct 2,3-diol desymmetrization method using TIPS-triflate was shown to be effective on the selective differentiation of Z,-methyl tartrate (and diisopropyl tartrate). The mono-silyl-protected intermediates 2.31 also proved to be useful when they were selectively differentiated at the 1,4-carboxyl position (2.35, 2.36) through the use of a borohydride reducing agent. Furthermore, the mono-silyl-protected derivative underwent periodate cleavage affording two synthetically useful a,P-unsaturated esters 2.43, 2.44, with one of esters being obtained via a silyl-migration method.''

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the various functions of proteins in biological systems is the transport of small molecules, for this purpose proteins have naturally evolved special mechanisms to allow both ligand binding and its subsequent release to a target site; a process fundamental to many biological processes. Transport of Vitamin E (a-tocopherol), a lipid soluble antioxidant, to membranes helps in the protection of polyunsaturated fatty acids against peroxidative damage. In this research, the ligand binding characteristics of several members of the CRALTRIO family of lipid binding proteins was examined; the recombinant human a-Tocopherol Transfer Protein (a-TIP), Supernatant Protein Factor (SPF)ffocopherol Associated Protein (TAP), Cellular Retinaldehyde Binding Protein (CRALBP) and the phosphatidylinositol transfer protein from S. cerevisiae Sec 14p. Recombinant Sec 14p was expressed and purified from E. coli for comparison of tocopherol binding to the two other recombinant proteins postulated to traffic a-tocopherol. Competitive binding assays using [3H]-a-tocopherol and Lipidex-l000 resin allowed determination of the dissociation constants ~) of the CRAL-TRIO proteins for a-tocopherol and - 20 hydrophobic ligands for evaluation of the possible biological relevance of the binding interactions observed. The KIs (nM) for RRR-a-tocopherol are: a-TIP: 25.0, Sec 14p: 373, CRALBP: 528 and SPFffAP: 615. This indicates that all proteins recognize tocopherol but not with the same affinity. Sec 14p bound its native ligand PI with a KI of381 whereas SPFffAP bound PI (216) and y-tocopherol (268) similarly in contrast to the preferential binding ofRRR-a-tocopherol by a-TIP. Efforts to adequately represent biologically active SPFff AP involved investigation of tocopherol binding for several different recombinant proteins derived from different constructs and in the presence of different potential modulators (Ca+2, Mg+2, GTP and GDP); none of these conditions enhanced or inhibited a-tocopherol binding to SPF. This work suggests that only aTTP serves as the physiological mediator of a-tocopherol, yet structural homology between proteins allows common recognition of similar ligand features. In addition, several photo-affmity analogs of a-tocopherol were evaluated for their potential utility in further elucidation of a-TTP function or identification of novel tocopherol binding proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sugar beet cyst nematode, Heterodera schachtii, is a major agricultural pest. The disruption of the mating behaviour of this plant parasite in the field may provide a means of biological control, and a subsequent increase in crop yield. The H. schachtii female sex pheromone, which attracts homospecific males, was collected in an aqueous medium and isolated using high performance liquid chromatography. Characterization of the male-attractive material revealed that it was heat stable and water soluble. The aqueous medium conditioned by female H. schachtii was found to be biologically active and stimulated male behaviour in a concentration dependent manner. The activity of the crude pheromone was specific to males of H. schachtii and did not attract second stage juveniles. Results indicated that vanillic acid, a putative nematode pheromone, is not an active component of the H. schachtii sex pheromone. Male H. schachtii exhibited stylet thrusting, a poorly understood behaviour of the male, upon exposure to the female sex pheromone. This behaviour appeared to be associated with mate-finding and was used as a novel indicator of biological activity in bioassays. Serotonin, thought to be involved in the neural control of copulatory behaviour in nematodes, stimulated stylet thrusting. However, the relationship between stylet thrusting induced by the sex pheromone and stylet thrusting induced by serotonin is not clear. Extracellular electrical activity was recorded fi-om the anterior region of H. schachtii males during stylet thrusting, and appeared to be associated with this behaviour. The isolation of the female sex pheromone of H. schachtii may, ultimately, lead to the structural identification and synthesis of the active substance for use in a novel biological control strategy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The human a-tocopherol transfer protein (h-a-TTP) is understood to be the entity responsible for the specific retention of a-tocopherol (a-toc) in human tissues over all other forms of vitamin E obtained from the diet. a-Tocopherol is the most biologically active form of vitamin E, and to date has been studied extensively with regard to its antioxidant properties and its role of terminating membrane lipid peroxidation chain reactions. However, information surrounding the distribution of a-tocopherol, specifically its delivery to intracellular membranes by a-TTP, is still unclear and the molecular factors influencing transfer remain elusive. To investigate the mechanism of ligand transfer by the h-a-TTP, a fluorescent analogue of a-toc has been used in the development of a fluorescence resonance energy transfer (FRET) assay. (/?)-2,5,7,8-tetramethyl-2-[9-(7-nitro-benzo[l,2,5]oxdiazol-4-ylamino)-nonyl]- chroman-6-ol (NBD-toc) has allowed for the development of the FRET-based ligand transfer assay. This ligand has been utilized in a series of experiments where changes were made to acceptor lipid membrane concentration and composition, as well as to the ionic strength and viscosity of the buffer medium. Such changes have yielded evidence supporting a collisional mechanism of ligand transfer by a-TTP, and have brought to light a new line of inquiry pertaining to the nature of the forces governing the collisional transfer interaction. Through elucidation of the transfer mechanism type, a deeper understanding of the transfer event and the in vivo fate of a-tocopherol have been obtained. Furthermore, the results presented here allow for a deeper investigation of the forces controlling the collisional protein-membrane interaction and their effect on the transfer of a-toc to membranes. Future investigation in this direction will raise the possibility of a complete understanding of the molecular events surrounding the distribution of a-toc within the cell and to the body's tissues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To further understand in vivo localization and trafficking of a-tocopherol (a-Toe), the most biologically active form of vitamin E, between lipid environments, tocopherols are required that can be followed by teclu1iques such as confocal microscopy and fluorescence resonance energy transfer (FRET) assays. To this end, sixteen fluorescent analogues of a-tocopherol (la-d [(1)anthroy loxy -a-tocopherols, A O-a-Toes], 2a-d [w-nitro benzoxadiazole-a-tocopherols, NBD-aToes], 3a-d [w-dansyl-a-tocopherols, DAN-a-Toes], and 4a-d [w-N-methylanthranilamide-atocopherols, NMA-a-TocsD were prepared by substituting fluorescent labels at the terminus of w-functionalized alkyl chains extending from C-2 of the chroman ring while retaining key binding features of the natural ligand. These compounds were prepared starting from (S)-Trolox® acid VIa esterification, protection, and reduction producing the silyl-protected (S)-Trolox aldehyde that was coupled using Wittig chemistry to different w-hydroxyalkylphosphonium bromides. Reduction of the alkene generated the w-hydroxy functionalized 2-n-alkyl intermediates 9a-d having the necessary 2R stereochemistry. A series of functional group manipulations including mesylation, substitution with azide, and hydride reduction provided w-amino functionalized intermediates 12a-d as well. Coupling intermediates 9a-d and 12a-d with the selected fluorophores (9- anthracene carboxylic acid, 4-chloro-7-nitrobenz-2-oxa-l,3-diazole, 5- dimethylaminonapthalene-l-sulfonyl chloride, and I-methyl-2H-3,1-benzoxazine-2,4(1H)dione), followed by deprotection of the phenolic silyl group, gave the desired fluorescent ligands la-d, 2a-d, 3a-d and 4a-d in good yield. Assessment of their binding affinities with recombinant human a-tocopherol transfer protein (ha-TTP) utilizing fluorescent titration binding assays identified competent ligands for further use in protein studies. Compounds Id (C9-AO-a-Toc) and 2d (C9-NBD-a-Toc) both having nonyl alkyl chain extensions between the chromanol and fluorophore were shown to bind specifically to ha-TTP with dissociation constants (KdS) of approximately 280 nM and 55 nM respectively, as compared to 25 nM for the natural ligand 2R,4'R,^'R-a-tocophQxoL.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The implementation of chiral centres within biologically active compounds has been a perplexing yet motivational force in chemistry. This work presents the attempted formation of a concurrent or sequential tandem catalyzed methodology of enantioselective nucleophilic addition and electrophilic cyclization. The 2'- arylalkynyl- aldehyde, ketone, and imine substrates used within were adeptly chosen with a dually activated structure; 1) for nucleophilic addition to the electrophilic substituents; and 2) for carbophilic activation of the alkyne substituent to undergo cyclization. To accomplish the nucleophilic addition, two distinct allylation methodologies were pursued: (/?)-BINOL catalyzed-allylboration and (5)- BINAP-AgF catalyzed-allylsilylation. BINAP catalyzed enantioselective allylation of 2'-arylalkynyl-aldehydes, to form chiral homoallylic alcohols, was successful. Homoallylic alcohols were isolated with high enantio-purity (>80%), which then underwent sequential cyclization to form chiral allylic phthalans, in moderate yields. An application of this methodology towards the construction of biologically active compounds was included with the partial synthesis of the natural product and H. pylori inhibitor, (+)-Spirolaxine methyl ether.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ease of production and manipulation has made plasmid DNA a prime target for its use in gene transfer technologies such as gene therapy and DNA vaccines. The major drawback of plasmid however is its stability within mammalian cells. Plasmid DNA is usually lost by cellular mechanisms or as a result of mitosis by simple dilution. This study set out to search for mammalian genomic DNA sequences that would enhance the stability of plasmid DNA in mammalian cells.Creating a plasmid based genomic DNA library, we were able to screen the human genome by transfecting the library into Human Embryonic Kidney (HEK 293) Cells. Cells that contained plasmid DNA were selected, using G418 for 14 days. The resulting population was then screened for the presence of biologically active plasmid DNA using the process of transformation as a detector.A commercially available plasmid DNA isolation kit was modified to extract plasmid DNA from mammalian cells. The standardized protocol had a detection limit of -0.6 plasmids per cell in one million cells. This allowed for the detection of 45 plasmids that were maintained for 32 days in the HEK 293 cells. Sequencing of selected inserts revealed a significantly higher thymine content in comparison to the human genome. Sequences with high A/T content have been associated with Scaffold/Matrix Attachment Region (S/MAR) sequences in mammalian cells. Therefore, association with the nuclear matrix might be required for the stability of plasmids in mammalian cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Compounds containing the pyrrolidine moiety are key substructures of compounds with biological activity and organocatalysts. In particular, annulated chiral pyrrolidines with alpha stereogenic centers have aldostereone synthase inhibition activity. In addition, 5-substituted pyrroloimidazol(in)ium salts precursors to N-heterocyclic carbene (NHC) precatalysts are rare due to a lack of convenient synthetic routes to access them. In this thesis is described a rapid synthesis of NHC precursors and a possible route to 5-substituted pyrroloimidazole biologically active compounds. The method involves the preparation of chiral saturated and achiral unsaturated pyrrolo[I,2- c]imidazol-3-ones from N-Cbz-protected t-Butyl proline carboxamide. The resulting starting materials may be used to prepare the target chiral annulated imidazol(in)ium products by a two-step sequence involving first stereoselective lithiation-substitution, followed by POCh induced salt formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999 C54 O46 2007