3 resultados para biological traits

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

House Finches (CarpQdacqs mexiCAnuS) were introduced to Long Island, New York from southern'California in 1940. Apparently, an initial sample of less than 100 birds has given rise to a population that now occupies much of the eastern United States. This study was to determine if morphological and reproductive changes have taken place in introduced eastern birds, which have colonized a novel environment. A study area in Goleta, California (CAL) represented the parental population whereas for comparison, House Finches in St. Catharines, Ontario (ONT) represented the introduced population. Interlocality variation in 25 morphometric characters of 100 adult House Finches was examined statistically. Singleclassification analysis of variance revealed significant interlocality differentiation in seven characters of males and nine of females. Females showed differentiation in more limb elements than males. Analysis of character variation using discriminant and principal component analysis distinguished samples on the basis of variation in shape. Compared to CAL, aNT birds (especially females) had smaller extremities relative to certain core parts and weight. Females showed similar patterns of character covariation in each locality on the second principal component, which suggests that differentiation of the ONT population may not be solely environmentally induced. Sexual dimorphism was evident in four charaoters in aNT and five in CAL. Disoriminant analysis distinguished sex on the basis of variation in shape. Males possessed a relatively larger flying apparatus and small.er hind limbs than females. The dearee of sexual dimorphism did not vary sicnifioantly between looalities. 3 Data on reproduotive parameters were oolleoted in 1983 and 1984 in ONT, and 1984 in CAL. In 1984, Bouse Finohes began breedina approximately three months earlier in CAL than in ONT. In ONT, there was no sianifioant differenoe in mean olutoh initiation date between 1983 and 1984. In both looalities most nests oontained either four or five ea",s, and olutoh size differenoes between looalites were not signifioant. Seasonal deolines in olutch size were evident in ONT but not in CAL. Intralooality variation in e.g weight and size was not related to clutch size. E",g weiaht showed no seasonal trend in ONT, but inoreased sianifioantly with breed ina season in OAL. In both looalities e8'''' weiaht increased sipifioantly with order of layina in olutohes of four but not in clutohes of five. Eag's in ONT in 1983 and 1984 were sip.ificantly larser than in CAL in 1984. The modal inoubation period was 13 days and did not vary sip.ifioantly between localites. In both looalities nestling weiaht on the day of hatohing was oorrelated to fresh ega welaht. For muoh of the period between hatohing and 14 days post-hatoh, ONT nestlinas were signifioantly laraer than CAL nestlings in terms of weiaht. bill length, bill depth, and manus length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sugar-feeding ecology of dipteran vectors has recently been targeted because it presents opportunities to inoculate common food sources for these dipterans with entomopathogenic bacteria as a means of controlling the population of host-seeking adult dipteran vectors. Whereas this approach to vector control holds some promise, differences in the nutrient composition and concentration in sugary food sources can influence the food selection pattern of dipteran vectors and potentially confound the outcomes of field trials on the efficacy of entomopathogenic bacteria as vector control agents. Further, nutrient components of bacteria-inoculated artificial diets may present unintended effects of extending the survivorship or fecundity of the target population and potentially render the whole approach counterproductive. The present study investigated the diet-specific factors that influence the foraging decisions of female Simulium venustum/verecundum (Diptera: Simuliidae) and female Anopheles stephensi (Diptera: Culicidae) on artificial nectar and honeydew. Paired choice experiments showed that the black flies forage more frequently from high calorie diets, which contained melezitose, or those diets that contained amino acids, compared to low calorie melezitose-free diets or amino acid-free diets. The mosquitoes however displayed a more random diet selection pattern. The effects of sugary diets on certain life-history traits considered to be important to the ecological fitness of the black flies and mosquitoes were also investigated. Sugary diets had no significant effect on the survivorship and fecundity of the black flies, but they influenced the resistance of Leucocytozoon-infected flies to the parasite. Amino acid-containing diets appeared to extend the survival of mosquitoes, and also allowed them to take more vertebrate blood when they blood fed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field, mosquitoes characteristically feed on sugars soon after emergence and intermittently during their adult lives. Sugar meals are commonly derived from plant nectar and homopteran honeydew, and without them, adults can only survive for a few days on larval reserves. In addition to sugar, females of most species rely on blood for the initiation and maintenance of egg development; thus their reproductive success depends to some extent on the availability of blood hosts. Males, on the other hand, feed exclusively on sugars. Consequently, their sexual maturation and reproductive success is largely dependent upon access to sugar sources. Plant nectar and homopteran honeydew are the two main sugar sources utilized by mosquitoes in the wild. Previous laboratory studies had shown that differences between nectar sources can affect the survivorship and biting frequency of disease vectoring mosquitoes. However, little is known on how sugar composition influence the reproductive processes in male mosquitoes. Male mosquitoes transfer accessory gland proteins and other hormones to their mates along with sperm during mating. In the female, these seminal fluid constituents exert their influence on reproductive genes that control ovulation and vitellogenesis. The present study tests the hypothesis that the mates of males consuming different sugar meals will exhibit varying levels of induction of vitellogenin (a gene which regulates the expression of egg yolk precursor proteins). Real-time quantitative RT-PCR was used to investigate how each sugar meal indirectly influences vitellogenin mRNA abundance in female Anopheles stephensi following mating. Results indicate that mates of nectar-fed males exhibit 2-fold greater change in vitellogenin expression than the mates of honeydew-fed males. However, this response did not occur in non-blood fed controls. These findings suggest that the stimulatory effect of mating on vitellogenesis in blood meal-reliant (i.e. anautogenous) mosquitoes may only be synergistic in nature. The present study also sought to compare the potential fitness costs of mating incurred by females that do not necessarily require a blood meal to initiate a reproductive cycle (i.e., exhibit autogeny). Females of the facultatively autogenous mosquito, Culex molestus were allowed to mate with males sustained on either nectar or honedyew. Mean lifetime fecundity and survivorship of females under the two different mating regimes were then recorded. Additionally, one-dimensional gel electrophoresis was used to verify the transfer of male accessory gland proteins to the sperm storage organs of females during mating.While there was no significant difference in survival between the test treatments, the mates of nectar-fed males produced 11% more eggs on average than mates of honeydew-fed males. However, additional data are needed to justify the extrapolation of these findings to natural settings. These findings prompt further investigation as the differences caused by diet variation in males may be reflected across other life history traits such as mating frequency and insemination capacity.