7 resultados para basal blood flow

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between local and reflexive control of skin blood flow (SkBF) is unclear. This thesis isolated the roles of rectal (Tre) and local (Tloc) temperature on forearm SkBF regulation at normal and elevated body temperatures, and to investigate the interaction between local and reflexive SkBF control. While either normothermic (Tre ~37.0°C) or hyperthermic (∆Tre +1.1°C), SkBF was assessed on the dorsal aspect of each forearm in 10 participants while Tloc was manipulated in an A-B-A-B fashion between neutral (33.0°C) and hot (38.5°C). Finally, local heating to 44°C was performed to elicit maximal SkBF. Data are presented as a percentage of maximal cutaneous vascular conductance (CVC), calculated as laser-Doppler flux divided by mean arterial pressure. Tloc manipulations performed during normothermia had significantly greater effects on CVC than during hyperthermia. The decreased modification to SkBF from the Tloc changes during hyperthermia suggests that strong reflexive vasodilation attenuates local SkBF control mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis tested whether cognitive performance during passive heat stress may be affected by changes in cerebrovascular variables as opposed to strictly thermally-induced changes. A pharmacological reduction in cerebral blood flow (CBF) using indomethacin along with a hypocapnia-induced CBF reduction during passive heat stress (Tre ~1.5°C above baseline) were used to investigate any cerebrovascular-mediated changes in cognitive performance. Repeated measures analysis of variance indicated that One-Touch Stockings of Cambridge (OTS) performance was not affected by a significant reduction in CBF during passive heat stress. More specifically, OTS accuracy measures did not change as a result of either a reduction in CBF or increasing passive heat stress. However, it was found that OTS response time indices improved with increasing passive heat stress independent of CBF changes. In conclusion, a significant reduction in CBF does not cause additional changes in performance of an executive functioning task during severe passive heat stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although reductions in cerebral blood flow (CBF) may be implicated in the development of central fatigue during environmental stress, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has yet to be isolated. The current research program examined the influence of CBF, with and without consequent hypocapnia, on neuromuscular responses during hypoxia and passive heat stress. To this end, neuromuscular responses, as indicated by motor evoked potentials (MEP), maximal M-wave (Mmax) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in three separate projects: 1) hypocapnia, independent of concomitant reductions in CBF; 2) altered CBF during severe hypoxia and; 3) thermal hyperpnea-mediated reductions in CBF, independent of hypocapnia. All projects employed a custom-built dynamic end-tidal forcing system to control end-tidal PCO2 (PETCO2), independent of the prevailing environmental conditions, and cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg·Kg-1) to selectively reduce CBF (estimated using transcranial Doppler ultrasound) without changes in PETCO2. A primary finding of the present research program is that the excitability of the corticospinal tract is inherently sensitive to changes in PaCO2, as demonstrated by a 12% increase in MEP amplitude in response to moderate hypocapnia. Conversely, CBF mediated reductions in cerebral O2 delivery appear to decrease corticospinal excitability, as indicated by a 51-64% and 4% decrease in MEP amplitude in response to hypoxia and passive heat stress, respectively. The collective evidence from this research program suggests that impaired voluntary activation is associated with reductions in CBF; however, it must be noted that changes in cVA were not linearly correlated with changes in CBF. Therefore, other factors independent of CBF, such as increased perception of effort, distress or discomfort, may have contributed to the reductions in cVA. Despite the functional association between reductions in CBF and hypocapnia, both variables have distinct and independent influence on the neuromuscular system. Therefore, future studies should control or acknowledge the separate mechanistic influence of these two factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although medium sized, muscular vessels normally respond to sympathetic stimulation by reducing compliance, it is unclear whether the large brachial artery is similarly affected by sympathetic stimulation induced via lower-body negative pressure (LBNP). Similarly, the impact of flow-mediated dilation (FMD) on brachial artery compliance and distensibility remains unresolved, hi addition, before such measures can be used as prognostic tools, it is important to investigate the reliability and repeatability of both techniques. Using a randomized order design, the effects of LBNP and FMD on the mechanical properties of the brachial artery were examined in nine healthy male subjects (mean age 24y). Non-invasive Doppler ultrasound and a Finometer were used to measure simultaneously the variation in systolic and diastolic diameter, and brachial blood pressure, respectively. These values were used to calculate compliance and distensibility values at baseline, and during both LBNP and FMD. The within-day and between-day repeatability of arterial diameter, compliance, distensibility, and FMD measures were assessed using the error coefficient and intra-class correlation coefficient (ICC). While heart rate (P<0.01) and peripheral resistance increased during LBNP (P<0.05), forearm blood flow and pulse pressure decreased (P<0.01). hi terms of mechanical properties, vessel diameters decreased (P<0.05), but both compliance and distensibility were not changed. On the other hand, FMD resulted in a significant increase in diameter (P<0.001), with no change in compliance or distensibility. hi summary, LBNP and FMD do not appear to alter brachial artery compliance or distensibility in young, healthy males. Whereas measures ofFMD were not found to be repeatable between days, the ICC indicated that compliance and distensibility were repeatable only within-day.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The McElroy and Larder Lake assemblages, located in the southern Abitibi Greenstone Belt are two late Archean metavolcanic sequences having markedly contrasting physical characteristics arid are separated from one another by a regional fault. An assemblage is an informal term which describes stratified volcanic and/or sedimentary rock units built during a specific time period in a similar depositional or volcanic setting and are commonly bounded by faults, unconformities or intrusions. The petrology and petrogenesis of these assemblages have been investigated to determine if a genetic link exists between the two adjacent assemblages. The McElroy assemblage is homoclinal sequence of evolved massive and pillowed fl.ows, which except for the basal unit represents a progressively fractionated volcanic pile. From the base to the top of the assemblage the lithologies include Fe-tholeiitic, dendritic flows; komatiite basaltic, ultramafic flows; Mg-tholeiitic, leucogabbro; Mg-tholeiitic, massive flows and Fe-tholeiitic, pillowed flows. Massive flows range from coarse grained to aphanitic and are commonly plagioclase glomerophyric. The Larder Lake assemblage consists of komatiitic, Mg-rich and Fe-rich tholeiitic basalts, structurally disrupted by folds and faults. Tholeiitic rocks in the Larder Lake assemblage range from aphanitic to coarse grained massive and pillowed flows. Komatiitic flows contain both spinifex and massive textures. Geochemical variability within both assemblages is attributed to different petrogenetic histories. The lithologies of the McElroy assemblage were derived by partial melting of a primitive mantle source followed by various degrees of crystal fractionation. Partial melting of a primitive mantle source generated the ultramafic flows and possibly other flows in the assemblage. Fractionation of ultramafic flows may have also produced the more evolved McElroy lithologies. The highly evolved, basal, dendritic flow may represent the upper unit 3 of a missing volcanic pile in which continued magmatism generated the remaining McElroy lithologies. Alternatively, the dendritic flows may represent a primary lava derived from a low degree (10-15%) partial melt of a primitive mantle source which was followed by continued partial melting to generate the ultramafic flows. The Larder Lake lithologies were derived by partial melting of a komatiitic source followed by gabbroic fractionation. The tectonic environment for both assemblages is interpreted to be an oceanic arc setting. The McElroy assemblage lavas were generated in a mature back arc setting whereas the Larder Lake lithologies were produced during the early stages of komatiitc crust subduction. This setting is consistent with previous models involving plate tectonic processes for the generation of other metavolcanic assemblages in the Abitibi Greenstone Belt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Across taxa, the early rearing environment contributes to adult morphological and physiological variation. For example, in birds, environmental temperature plays a key role in shaping bill size and clinal trends across latitudinal/thermal gradients. Such patterns support the role of the bill as a thermal window and in thermal balance. It remains unknown whether bill size and thermal function are reversibly plastic. We raised Japanese quail in warm (308C) or cold (158C) environments and then at a common intermediate temperature. We predicted that birds raised in cold temperatures would develop smaller bills than warm-reared individuals, and that regulation of blood flow to the bill in response to changing temperatures would parallel the bill’s role in thermal balance. Cold-reared birds developed shorter bills, although bill size exhibited ‘catch-up’ growth once adults were placed at a common temperature. Despite having lived in a common thermal environment as adults, individuals that were initially reared in the warmth had higher bill surface temperatures than coldreared individuals, particularly under cold conditions. This suggests that blood vessel density and/or the control over blood flow in the bill retained a memory of early thermal ontogeny. We conclude that post-hatch temperature reversibly affects adult bill morphology but irreversibly influences the thermal physiological role of bills and may play an underappreciated role in avian energetics

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modeling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment.