4 resultados para automatic target detection

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Event-related potentials were recorded from 10-year-old children and young adults in order to examine the developmental dififerences in two frontal lobe functions: detection of novel stimuli during an auditory novelty oddball task, and error detection during a visual flanker task. All participants showed a parietally-maximal P3 in response to auditory stimuli. In children, novel stimuli generated higher P3 amplitudes at the frontal site compared with target stimuli, whereas target stimuli generated higher P3 amplitudes at the parietal site compared with novel stimuli. Adults, however, had higher P3 amplitude to novel tones compared with target tones at each site. Children also had greater P3 amplitude at more parietal sites than adults during the novelty oddball and flanker tasks. Furthermore, children and adults did not show a significant reduction in P3 amplitude from the first to second novel stimulus presentation. No age differences were found with respect to P3 latency to novel and target stimuli. These findings suggest that the detection of novel and target stimuli is mature in 10-year-olds. Error trials typically elicit a negative ERP deflection (the ERN) with a frontal-central scalp distribution that may reflect response monitoring. There is also evidence of a positive ERP peak (the Pe) with a posterior scalp distribution which may reflect subjective recognition of a response. Both children and adults showed an ERN and Pe maximal at frontal-central sites. Children committed more errors, had smaller ERN across sites, and had a larger Pe at the parietal site than adults. This suggests that response monitoring is still immature in 10-year-olds whereas recognition of and emotional responses to errors may be similar in children and adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are a class of short (similar to 22nt), single stranded RNA molecules that function as post-transcriptional regulators of gene expression. MiRNAs can regulate a variety of important biological pathways, including: cellular proliferation, differentiation and apoptosis. Profiling of miRNA expression patterns was shown to be more useful than the equivalent mRNA profiles for characterizing poorly differentiated tumours. As such, miRNA expression "signatures" are expected to offer serious potential for diagnosing and prognosing cancers of any provenance. The aim of this study was to investigate the potential of using deregulation of urinary miRNAs in order to detect Prostate Cancer (PCa) among Benign Prostatic Hyperplasia (BPH). To identify the miRNA signatures specific for PCa, miRNA expression profiling of 8 PCa patients, 12 BPH patients and 10 healthy males was carried out using whole genome expression profiling. Differential expression of two individual miRNAs between healthy males and BPH patients was detected and found to possibly target genes related to PCa development and progression. The sensitivity and specificity of miR-1825 for detecting PCa among BPH individuals was found to be 60% and 69%, respectively. Whereas, the sensitivity and specificity of miR-484 were 80% and 19%, respectively. Additionally, the sensitivity and specificity for miR-1825/484 in tandem were 45% and 75%, respectively. The proposed PCa miRNA signatures may therefore be of great value for the accurate diagnosis of PCa and BPH. This exploratory study has identified several possible targets that merit further investigation towards the development and validation of diagnostically useful, non-invasive, urine-based tests that might not only help diagnose PCa but also possibly help differentiate it from BPH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.