7 resultados para application to medical science
em Brock University, Canada
Resumo:
In Canada freedom of information must be viewed in the context of governing -- how do you deal with an abundance of information while balancing a diversity of competing interests? How can you ensure people are informed enough to participate in crucial decision-making, yet willing enough to let some administrative matters be dealt with in camera without their involvement in every detail. In an age when taxpayers' coalition groups are on the rise, and the government is encouraging the establishment of Parent Council groups for schools, the issues and challenges presented by access to information and protection of privacy legislation are real ones. The province of Ontario's decision to extend freedom of information legislation to local governments does not ensure, or equate to, full public disclosure of all facts or necessarily guarantee complete public comprehension of an issue. The mere fact that local governments, like school boards, decide to collect, assemble or record some information and not to collect other information implies that a prior decision was made by "someone" on what was important to record or keep. That in itself means that not all the facts are going to be disclosed, regardless of the presence of legislation. The resulting lack of information can lead to public mistrust and lack of confidence in those who govern. This is completely contrary to the spirit of the legislation which was to provide interested members of the community with facts so that values like political accountability and trust could be ensured and meaningful criticism and input obtained on matters affecting the whole community. This thesis first reviews the historical reasons for adopting freedom of information legislation, reasons which are rooted in our parliamentary system of government. However, the same reasoning for enacting such legislation cannot be applied carte blanche to the municipal level of government in Ontario, or - ii - more specifially to the programs, policies or operations of a school board. The purpose of this thesis is to examine whether the Municipal Freedom of Information and Protection of Privacy Act, 1989 (MFIPPA) was a neccessary step to ensure greater openness from school boards. Based on a review of the Orders made by the Office of the Information and Privacy Commissioner/Ontario, it also assesses how successfully freedom of information legislation has been implemented at the municipal level of government. The Orders provide an opportunity to review what problems school boards have encountered, and what guidance the Commissioner has offered. Reference is made to a value framework as an administrative tool in critically analyzing the suitability of MFIPPA to school boards. The conclusion is drawn that MFIPPA appears to have inhibited rather than facilitated openness in local government. This may be attributed to several factors inclusive of the general uncertainty, confusion and discretion in interpreting various provisions and exemptions in the Act. Some of the uncertainty is due to the fact that an insufficient number of school board staff are familiar with the Act. The complexity of the Act and its legalistic procedures have over-formalized the processes of exchanging information. In addition there appears to be a concern among municipal officials that granting any access to information may be violating personal privacy rights of others. These concerns translate into indecision and extreme caution in responding to inquiries. The result is delay in responding to information requests and lack of uniformity in the responses given. However, the mandatory review of the legislation does afford an opportunity to address some of these problems and to make this complex Act more suitable for application to school boards. In order for the Act to function more efficiently and effectively legislative changes must be made to MFIPPA. It is important that the recommendations for improving the Act be adopted before the government extends this legislation to any other public entities.
Resumo:
Methods for both partial and full optimization of wavefunction parameters are explored, and these are applied to the LiH molecule. A partial optimization can be easily performed with little difficulty. But to perform a full optimization we must avoid a wrong minimum, and deal with linear-dependency, time step-dependency and ensemble-dependency problems. Five basis sets are examined. The optimized wavefunction with a 3-function set gives a variational energy of -7.998 + 0.005 a.u., which is comparable to that (-7.990 + 0.003) 1 of Reynold's unoptimized \fin ( a double-~ set of eight functions). The optimized wavefunction with a double~ plus 3dz2 set gives ari energy of -8.052 + 0.003 a.u., which is comparable with the fixed-node energy (-8.059 + 0.004)1 of the \fin. The optimized double-~ function itself gives an energy of -8.049 + 0.002 a.u. Each number above was obtained on a Bourrghs 7900 mainframe computer with 14 -15 hrs CPU time.
Resumo:
The present thesis describes syntheses, structural studies, and catalytic reactivity of new non-classical silane complexes of ruthenium and iron. The ruthenium complexes CpRu(PPri3)CI(T]2-HSiR3) (1) (SiR3 = SiCh (a), SiClzMe (b), SiCIMe2 (c), SiH2Ph (d), SiMe2Ph (e» were prepared by reactions of the new unsaturated complex CpRu(PPri3)CI with silanes. According to NMR studies and X-ray analyses, the complexes la-c exhibit unusual simultaneous Si··· H and Si··· CI-Ru interactions. The complex CpRu(PPri3)CI was also used for the preparation of the first examples of late transition metal agostic silylamido complexes CpRu(PPri3)(N(T]2-HSiMe2)R) (2) (R= Ar or But), which were characterized by NMR spectroscopy. The iron complexes CpFe(PMePri2)H2(SiR3) (3) (SiR3 = SiCh (a), SiClzMe (b), SiCIMe2 (c), SiH2Ph (d), SiMe2Ph (e» were synthesized by the reaction of the new borohydride iron complex CpFe(PMePri2)(B~) with silanes in the presence NEt3. The complexes 3 exhibit unprecedented two simultaneous and equivalent Si··· H interactions, which was confirmed by X-ray analyses and DFT calculations. A series of cationic ruthenium complexes [CpRu(PR3)(CH3CN)(112-HSiR'3)]BAF (PR3 = PPri 3 (4), PPh3 (5); SiR'3 = SiCh (a), SiClzMe (b), SiClMe2 (c), SiH2Ph (d), SiMe2Ph (e» was obtained by substitution of one of the labile acetonitrile ligands in [CpRu(PR3)(CH3CNh]BAF with sHanes. Analogous complexes [TpRu(PR3)(CH3CN)(T]2 -HSiR' 3)]BAF (5) were obtained by the reaction of TpRu(PR3)(CH3CN)CI with LiBAF in the presence of silanes. The complexes 4-5 were characterized by NMR spectroscopy, and the observed coupling constants J(Si-H) allowed us to estimate the extent of Si-H bond activation in these compounds. The catalytic activity in hydrosilylation reactions of all of the above complexes was examined. The most promising results were achieved with the cationic ruthenium precatalyst [CpRu(PPri3)(CH3CN)2t (6). Complex 6 shows good to excellent catalytic activity in the hydrosilylation of carbonyls, dehydrogenative coupling of silanes with alcohols, amines, acids, and reduction of acid chlorides. We also discovered very selective reduction of nitriles and pyridines into the corresponding N-silyl imines and l,4-dihydropyridines, respectively, at room temperature with the possibility of catalyst recycling. These chemoselective catalytic methods have no analogues in the literature. The reactions were proposed to proceed via an ionic mechanism with intermediate formation of the silane a-complexes 4.
Resumo:
Fermi patches in quasi-two dimensional charge density waves (CDW) have not described the connection to superconductivity (SC) according to theory adequately at this point in time. The connection between CDW and SC in the quasi-two dimensional material CuxTiSe2 is an interesting one which might reveal mechanisms in unconventional superconductors. A previous Brock graduate student grew crystals of CuxTiSe2. The precise doping of the samples was not known. In order to determine the doping parameter x in CuxTiSe2, a sensitive resistivity measurement system was necessary. A new resistivity measurement system was designed and implemented utilizing an Infrared Labs HDL-10 He3 cryostat. By comparing with data from the literature, doping of two samples was investigated using the new measurement system and a Quantum Design Magnetic Property Measurement System (MPMS). Methods for determining the doping revealed that the old resistivity system would not be able to determine the CDW transition temperature of highly doped samples or doping for elongated samples due to electronic noise. Doping in one sample was found to be between x=0.06 and x=0.065. Values of doping in the second sample had a discrepancy but could be explained by incorrect sample orientation.
Resumo:
This thesis describes syntheses and catalytic reactivity of several half-sandwich complexes of ruthenium. The neutral ruthenium trihydride complex, Cp(PPri3)RuH3(1), can efficiently catalyse the H/D exchange reaction between various organic substrates and deuterium sources, such as benzene-d6. Moreover, the H/D exchange reactions of polar substrates were also observed in D2O, which is the most attractive deuterium source due to its low cost and low toxicity. Importantly, the H/D exchange under catalytic conditions was achieved not only in aromatic compounds but also in substituted liphatic compounds. Interestingly, in the case of alkanes and alkyl chains, highly selective deuterium incorporation in the terminal methyl positions was observed. It was discovered that the methylene units are engaged in exchange only if the molecule contains a donating functional group, such as O-and N-donors, C=C double bonds, arenes and CH3. The cationic half-sandwich ruthenium complex [Cp(PPri3)Ru(CH3CN)2]+(2) catalyses the chemoselective mono-addition of HSiMe2Ph to pyridine derivatives to selectively give the 1,4-regiospecific, N-silylated products. An ionic hydrosilylation mechanismis suggested based on the experiments. To support this mechanistic proposal, kinetic studies under catalytic conditions were performed. Also, the 1,4-regioselective mono-hydrosilylation of nitrogen containing compounds such as phenanthroline, quinoline and acridine can be achieved with the related Cp*complex [Cp*(phen)Ru(CH3CN)]+(3) (phen = 1,10-phenanthroline) and HSiMe2Ph under mild conditions. The cationic ruthenium complex 2 can also be used as an efficient catalyst for transfer hydrogenation of various organic substrates including carbonyls, imines, nitriles and esters. Secondary alcohols, amines, N-isopropylidene amines and ether compounds can be obtained in moderate to high yields. In addition, other ruthenium complexes, 1,3 and [Cp*(PPri3)Ru(CH3CN)2]+(4), can catalyse transfer hydrogenation of carbonyls although the reactions were sluggish compared to the ones of 2. The possible intermediate, Cp(PPri3)Ru(CH3CN)(H), was characterized by NMR at low temperature and the kinetic studies for the transfer hydrogenation of acetophenone were performed. Recently, chemoselective reduction of acid chlorides to aldehydes catalysed by the complex 2 was reported. To extend the catalytic reactivity of 2, reduction of iminoyl chlorides, which can be readily obtained from secondary amides, to the corresponding imines and aldehydes was investigated. Various substituted iminoyl chlorides were converted into the imines and aldehydes under mild conditions and several products were isolated with moderate yields.
Resumo:
This thesis describes the synthesis and use of an N-substituted ferrocene bearing a proline-derived chiral directing group and diastereoselective lithiation-electrophile quench of the pro-Sp hydrogen of the ferrocene to give planar chiral products in >95:5 dr. The auxiliary group is found to be stable to lithium bases of types RLi and R2NLi giving the same diastereoselectivity. The anti- epimer of the previously mentioned syn auxiliary induces lithiation of pro Rp rather than pro Sp hydrogen in >95:5 dr. Upon electrophile quench and elimination, the enantiomer of the syn-derived planar chiral imidazolone is obtained. Hence, this method provides a practical way to prepare planar chiral enantiomers in this series without the use of a more expensive D-proline derived starting material. The syn and anti epimers have β, γ-stereogenic centers and the origin of stereoselectivity in lithiation appears to be driven by the conformational bias exerted by the β-silyloxy moiety in each chiral auxiliary. In the thesis, this conclusion is supported using insensitivity of lithiation selectivity to the bulkiness of the base, comparison of enantiomers, deuteration experiments, nOe difference studies and computational modeling of the ground states and lithiation transition states for both substrates. The products are then converted to ligand precursors to make iridium and rhodium complexes. Among them, one of the cationic iridium complex is found to be effective in the asymmetric hydrogenation of 2-substituted quinolines with enantioselectivities up to 80% at pressures as low as 5 atm.
Resumo:
This study sought to explore the current state of Grades 4 to 8 science education in Ontario from the perspective of Junior/Intermediate (J/I) teachers. The study’s methodology was a sequential 2-phased mixed methods explanatory design denoted as QUAN (qual) qual. Data were collected from an online survey and follow-up interviews. J/I teachers (N = 219) from 48 school boards in Ontario completed a survey that collected both quantitative and qualitative data. Interviewees were selected from the survey participant population (n = 6) to represent a range of teaching strategies, attitudes toward teaching science, and years of experience. Survey and interview questions inquired about teacher attitudes toward teaching science, academic and professional experiences, teaching strategies, support resources, and instructional time allotments. Quantitative data analyses involved the descriptive statistics and chi-square tests. Qualitative data was coded inductively and deductively. Academic background in science was found to significantly influence teachers’ reported level of capability to teach science. The undergraduate degrees held by J/I science teachers were found to significantly influence their reported levels of capability to teach science. Participants identified a lack of time allocated for science instruction and inadequate equipment and facilities as major limitations on science instruction. Science in schools was reported to be of a “second-tiered” value to language and mathematics. Implications of this study include improving undergraduate and preservice experiences of elementary teachers by supporting their science content knowledge and pedagogical content knowledge.