4 resultados para amplified fragment length polymorphisms (AFLP)
em Brock University, Canada
Resumo:
A total of 251 bacterial isolates were isolated from blotched mushroom samples obtained from various mushroom farms in Canada. Out of 251 stored isolates, 170 isolates were tested for pathogenicity on Agaricus bisporus through mushroom rapid pitting test with three distinct pathotypes observed: dark brown, brovm and yellow/yellow-brown blotch. Phenotypic analysis of 83 isolates showed two distinct proteinase K resistant peptide profiles. Profile group A isolates exhibited peptides with masses of 45, 18, 16 and 14 kDa and fiirther biochemical tests identified them as Pseudomonasfluorescens III and V. Profile group B isolates lacked the 16-kDa peptide and the blotch causing bacterial isolates of this group was identified as Serratia liquefaciens and Cedecea davisae. Comparative genetic analysis using Amplified Fragment Length Polymorphism (AFLP) on 50 Pseudomonas sp. isolates (Group A) showed that various blotch symptoms were caused by isolates distributed throughout the Pseudomonas sp. clusters with the exception of the Pseudomonas tolaasii group and one non-pathogenic Pseudomonas fluorescens cluster. These results show that seven distinct Pseudomonas sp. genotypes (genetic clusters) have the ability to cause various symptoms of blotch and that AFLP can discriminate blotch causing from non-blotch causing Pseudomonasfluorescens. Therefore, a complex of diverse bacterial organisms causes bacterial blotch disease
Resumo:
The anther smut fungus U stilago violacea has been developed as an important model organIsm for genetic, morphological and physiological studies. Valuable information on the nuclear genetics on U stilago violacea has been obtained in the last 20-25 years. However, in this organism almost nothing is known about mitochondria which make up an important aspect of the fungal genetic system. One fundamental aspect, mitochondrial inheritance, was addressed by this investigation. Mitochondrial DNA (mtDNA) of U. violacea was purified and restriction fragments cloned. MtDNA restriction fragment length polymorphisms (RFLPs) were identified among different isolates and were used as genetic markers for studying mitochondrial inheritance in crosses between polymorphic isolates. Matings of the yeast-like haploid cells of opposite mating types resulted in dikaryons containing mitochondria from both parents. The dikaryons were induced to form hyphae and then allowed to revert to haploid growth, resulting 1ll a colony that is bisectored for the two nuclear types. Both nuclear-type progeny of each cross were examined for parental mitochondrial type: Either mitochondrial type was observed 1ll the progeny. Thus, mitochondrial inheritance is biparental in this organism. The recovery of both mitochondrial types in the progeny was non-random. In progeny with the nuclear genotype of the al mating type parent mitochondria from both parents were inherited equally well. However, 1ll progeny with the a2 mating type, mitochondria were inherited almost exclusively (94%) from the a2 parent.
Resumo:
Phascolomyces articulosus genomic DNA was isolated from 48 h old hyphae and was used for amplification of a chitin synthase fragment by the polymerase chain reaction method. The primers used in the amplification corresponded to two widely conserved amino acid regions found in chitin synthases of many fimgi. Amphfication resulted in four bands (820, 900, 1000 and 1500 bp, approximately) as visualized in a 1.2% agarose gel. The lowest band (820 bp) was selected as a candidate for chitin synthase because most amplified regions from other fimgi so far exhibited similar sizes (600-750 bp). The selected fragment was extracted from the gel and cloned in the Hinc n site of pUC19. The derived plasmid and insert were designated ^\5C\9'PaCHS and PaCHS respectively. The plasmid pUC19-PaC/fS was digested by several restriction enzymes and was found to contain BamHl and HincU sites. Sequencing of PaCHS revealed two intron sequences and a total open reading frame of 200 amino acids. The derived polypeptide was compared with other related sequences from the EMBL database (Heidelberg, Germany) and was matched to 36 other fiilly or partially sequenced fimgal chitin synthase genes. The closest resemblance was with two genes (74.5% and 73.1% identity) from Rhizopus oligosporus. Southern hybridization with the cloned fragment as a probe to the PCR reaction showed a strong signal at the fragment selected for cloning and weaker signals at the other two fragments. Southern hybridization with partially digested Phascolomyces articulosus genomic DNA showed a single band. The amino acid sequence was compared with sequences from other chitin synthase gene classes using the CLUSTALW program. The chitin synthase fragment from Phascolomyces articulosus was initially grouped in class n along with chitin synthase fragments from Rhizopus oligosporus and Phycomyces blakesleeanus which also belong to the same class, Zygomycetes. Bootstrap analysis using the neighbor-joining method available by CLUSTALW verified such classification. Comparison of PaCHS revealed conservation of intron positions that are characteristic of chitin synthase gene fragments of zygomycetous fungi.
Resumo:
Human endogenous retroviruses (HERVs) are the result of ancient germ cell infections of human germ cells by exogenous retroviruses. HERVs belong to the long terminal repeat (LTR) group of retrotransposons that comprise ~8% of the human genome. The majority of the HERVs documented have been truncated and/or incurred lethal mutations and no longer encode functional genes; however a very small number of HERVs seem to maintain functional in making new copies by retrotranspositon as suggested by the identification of a handful of polymorphic HERV insertions in human populations. The objectives of this study were to identify novel insertion of HERVs via analysis of personal genomic data and survey the polymorphism levels of new and known HERV insertions in the human genome. Specifically, this study involves the experimental validation of polymorphic HERV insertion candidates predicted by personal genome-based computation prediction and survey the polymorphism level within the human population based on a set of 30 diverse human DNA samples. Based on computational analysis of a limited number of personal genome sequences, PCR genotyping aided in the identification of 15 dimorphic, 2 trimorphic and 5 fixed full-length HERV-K insertions not previously investigated. These results suggest that the proliferation rate of HERVKs, perhaps also other ERVs, in the human genome may be much higher than we previously appreciated and the recently inserted HERVs exhibit a high level of instability. Throughout this study we have observed the frequent presence of additional forms of genotypes for these HERV insertions, and we propose for the first time the establishment of new genotype reporting nomenclature to reflect all possible combinations of the pre-integration site, solo-LTR and full-length HERV alleles.