2 resultados para amperometric detection (L)-dopa
em Brock University, Canada
Resumo:
The addition of L-Glutamate (L-GLU) and L-Hethionine ~ulfoximine (L-HSO) to mechanically isolated. photosynthetically competent, Asparagus sprengeri mesophyll cells ~u~pended in 1mM CaS04 cau~ed an immediate transient alkalinization of the cell su~pension medium in both the light and dark. The alkalinization response was specific and stereospecific as none of the L-isomers of the other 19 protein amino acids tested or D-GLU gave this response. Uptake of 14C-L-GLU was stimulated by the light. The addition of non-radioactive L-GLU. or L-GLU analogs together with 14C-L-GLU showed that only L-GLU and L-HSO stimulated alkalinization whilst inhibiting the uptake of 14C-L-GLU. Both the L-GLU dependent alkalinization and the upt~ke of 14C-L-GLU were stimulated when the external pH was decreased from 6.5 to 5.5. Increasing external K+ concentrations inhibited the uptake of 14C-L-GLU. Fusicoccin (FC) stimulated uptake. The L-GLU dependent alkalinization re~ponse exhibited monophasic saturation kinetics while the uptake of 14C-L-GLU exhibited biphasic saturation kinetics. In addition to a saturable component. the uptake kinetics also showed a linear component of uptake. Addition of L-GLU and L-MSO caused internal acidification of the cell as measured by a change in the distribution of 14C-DMO. There was no change in K+ efflux when L-GLU was added. A H+ to L-GLUinflux stoichiometry of 3:1 wa~ mea~ured at an external I.-GLU concentration of O.5mM and increased with increasing external 13 L-QLU concentration. Metabolism of L-GLU was detected manometrlcally by observing an increase in COa evolution upon the addition of L-QLU and by detection of i*C02 evolution upon the addition of »*C-L-GLU. »*C02 evolution was higher in the dark than in the light. The data are consistent with the operation of a H+/L-QLO cotransport system. The data also show that attempts to quantify the stoichlometry of the process were complicated by the metabolism of L-GLU.
Resumo:
Event-related potentials were recorded from 10-year-old children and young adults in order to examine the developmental dififerences in two frontal lobe functions: detection of novel stimuli during an auditory novelty oddball task, and error detection during a visual flanker task. All participants showed a parietally-maximal P3 in response to auditory stimuli. In children, novel stimuli generated higher P3 amplitudes at the frontal site compared with target stimuli, whereas target stimuli generated higher P3 amplitudes at the parietal site compared with novel stimuli. Adults, however, had higher P3 amplitude to novel tones compared with target tones at each site. Children also had greater P3 amplitude at more parietal sites than adults during the novelty oddball and flanker tasks. Furthermore, children and adults did not show a significant reduction in P3 amplitude from the first to second novel stimulus presentation. No age differences were found with respect to P3 latency to novel and target stimuli. These findings suggest that the detection of novel and target stimuli is mature in 10-year-olds. Error trials typically elicit a negative ERP deflection (the ERN) with a frontal-central scalp distribution that may reflect response monitoring. There is also evidence of a positive ERP peak (the Pe) with a posterior scalp distribution which may reflect subjective recognition of a response. Both children and adults showed an ERN and Pe maximal at frontal-central sites. Children committed more errors, had smaller ERN across sites, and had a larger Pe at the parietal site than adults. This suggests that response monitoring is still immature in 10-year-olds whereas recognition of and emotional responses to errors may be similar in children and adults.