3 resultados para alpha(2) adrenergic and imidazoline receptors
em Brock University, Canada
Resumo:
Objective: The adventitia has been recognized to play important roles in vascular oxidative stress, remodelling and contraction. We recently demonstrated that adventitial fibroblasts are able to express endothelin-1 (ET-1) in response to angiotensin II (ANG II). However, the mechanisms by which ANG II induces ET-1 expression are unknown. It is also unclear whether the ET-1 receptors are expressed in the adventitia. We therefore examined the role of oxidative stress in the regulation of ET-1. We also investigated the expression of both the ETA and ETB receptors and the roles of these two types of receptors in collagen synthesis and ET-1 clearance in adventitial fibroblasts. Methods and Results: Adventitial fibroblasts were isolated and cultured from the thoracic mouse aorta. Cells were treated with ANG II (lOOnM), ET-1 (lOpM), NADPH oxidase inhibitor apocynin (lOOfiM), the superoxide anion scavenger tempol (lOOfiM), the ANG II receptor antagonists (100[aM), losartan (AT| receptor) and PD 1233 19 (AT2 receptor), the ET-1 receptor antagonists (lOOuM), BQ123 (ETA receptor) and BQ788 (ETB receptor), and the ETB receptor agonist (lOOnM) Sarafotoxin 6C. ET-1 peptide levels were determined by ELISA, while ETA ,ETB and collagen levels were determined by Western blot. ANG II increased ET-1 peptide levels in a time-dependent manner reaching significance when incubated for 24 hours. NAD(P)H oxidase inhibitor, apocynin, as well as the superoxide scanverger, tempol, significantly reduced ANG Il-induced ET-1 peptide levels while over-expression of SOD1 (endogenous antioxidant enzyme) significantly decreased ANG Il-induced collagen I expression, therefore implicating reactive oxygen species in the mediation of ET-1. ANG II increased ETA receptor protein as well as collagen in a similar fashion, reaching significance after 4, 6, and 24 hours treatment. ANG II induced collagen was reduced while in the presence of the ETA receptor antagonist suggesting the role of the ETa receptor in the regulation of the extracellular matrix. ANG II treatment also increased ETB receptor protein levels in a time-dependent manner. ANG II treatment in the presence of the ETB receptor antagonist significantly increased ET-1 peptide levels. On another hand, the ETB receptor agonist, Sarafotoxin 6C, significantly decreased ET-1 peptide levels. These data implicate the role of the ETb receptor in the clearance of the ET-1 peptide. Conclusion: ANG II-induced increases of ET-1 peptide appears to be mediated by reactive oxygen species derived from NAD(P)H oxidase. Both the ETA and ETB receptors are expressed in adventitial fibroblasts. The ETA receptor subtype mediates collagen I expression, while the ETB receptor may play a protective role through increasing the clearance of the ET- 1 peptide.
Resumo:
The proce-ss ofoxygenic photosynthesis is vital to life on Earth. the central event in photosynthesis is light induced electron transfer that converts light into energy for growth. Ofparticular significance is the membrane bound multisubunit protein known as Photosystem I (PSI). PSI is a reaction centre that is responsible for the transfer of electrons across the membrane to reduce NADP+ to NADPH. The recent publication ofa high resolution X-ray structure of PSI has shown new information about the structure, in particular the electron transfer cofactors, which allows us to study it in more detail. In PSI, the secondary acceptor is crucial for forward electron transfer. In this thesis, the effect of removing the native acceptor phylloquinone and replacing it with a series of structurally related quinones was investigated via transient electron paramagnetic resonance (EPR) experiments. The orientation of non native quinones in the binding site and their ability to function in the electron transfer process was determined. It was found that PSI will readily accept alkyl naphthoquinones and anthraquinone. Q band EPR experiments revealed that the non-native quinones are incorporated into the binding site with the same orientation of the headgroup as in the native system. X band EPR spectra and deuteration experiments indicate that monosubstituted naphthoquinones are bound to the Al site with their side group in the position occupied by the methyl group in native PSI (meta to the hydrogen bonded carbonyl oxygen). X band EPR experiments show that 2, 3- disubstituted methyl naphthoquinones are also incorporated into the Al site in the same orientation as phylloquinone, even with the presence of a halogen- or sulfur-containing side chain in the position normally occupied by the phytyl tail ofphylloquinone. The exception to this is 2-bromo-3-methyl --.- _. -. - -- - - 4 _._ _ _ - _ _ naphthoquinone which has a poorly resolved spectrum, making determination of the orientation difficuh. All of the non-native quinones studied act as efficient electron acceptors. However, forward electron transfer past the quinone could only be demonstrated for anthraquinone, which has a more negative midpoint potential than phylloquinone. In the case of anthraquinone, an increased rate of forward electron transfer compared to native PSI was found. From these results we can conclude that the rate ofelectron transfer from Al to Fx in native PSI lies in the normal region ofthe Marcus Curve.
Resumo:
3-alkyl-2-methoxypyrazines (MPs) are grape- and insect-derived odor-active compounds responsible for vegetative percepts that are detrimental to wine quality when elevated. This study tested both the effect of closure/packaging types and light/temperature storage conditions on MPs (isopropyl-, secbutyl-, and isobutyl-MP) in wine. An MP-emiched wine rapidly (after 140 hours) and significantly decreased in MP concentration after natural and synthetic cork contact (immersion of closures in wine). This decrease was greatest with synthetic closures (70% - 89% reduction) and secbutyl-MP. Subsequently storage trials tested the effects of commercial closure/packaging options (natural cork, agglomerate cork, synthetic corks, screwcaps and TetraPak® cartons) on MPs in MP-emiched Riesling and Cabernet Franc over 18 months. Regardless of packaging, isobutyl-MP was the most altered from bottling. Notably, all MP levels tended to decrease to the greatest extent in TetraPak® cartons (~34% for all MPs) and there was evidence of contribution ofisoproyl- and secbutyl-MP from cork-based closures (i.e. ~30% increase in secbutyl-MP after 6 months) or from an unidentified wine constituent. To test the effects of various light/temperature conditions (light exposed at ambient temperature in three different bottle hues, light excluded at ambient temperature and light excluded at a "cellar" temperature (14°C)), MP-emiched Riesling and Cabernet Franc were also analyzed for MP concentrations over 12 months. MPs did not vary consistently with light or temperature. Other odorants and physico-chemical properties were tested in all wines during storage trials and closely agree with previous literature. These results provide novel insights into MPs during ageing, interactions with packaging and storage conditions, and assist in the selection of storage conditions/packaging for optimal wine quality.