2 resultados para acute temperature challenge

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A retrospective study of patients hospitalized with influenza and/or pneumonia in a Niagara area community hospital for the influenza season 2003-04 was designed with the main goal of enhancing pneumonia surveillance in acute care facilities and the following specific objectives: 1) identify etiologies, factors, and clinical presentation associated with pneumonia; 2) assess the ODIN score on ICU patients to predict outcomes of severe pneumonia; 3) identify the frequency of pneumonia and influenza in a hospital setting; and 4) develop a hospital pneumonia electronic surveillance tool. A total of 172 patients' charts (50% females) were reviewed and classified into two groups: those with diagnosis of pneumonia (n=132) and those without pneumonia (n=40). The latter group consisted mainly of patients with influenza (85%). Most patients were young (<10yrs) or elderly (>71yrs). Presenting body temperature <38°C, cough symptoms, respiratory and cardiac precomorbidities were common in both groups. Pneumonia was more frequent in males (p= .032) and more likely community-acquired (98%) than nosocomial (2%). No evidence of ventilator-associated pneumonia was found. Microbiology testing in 72% of cases detected 19 different pathogens. In pneumonia patients the most common organisms were Streptococcus pneumoniae (3%), Respiratory syncytial virus (4%), and Influenza A virus (2%). Conversely, Influenza A virus was identified in 73% of non-pneumonia patients. Community-acquired influenza was more common (80%) than nosocomial influenza (20%). The ODIN score was a good predictor of mortality and the new electronic surveillance tool was an effective prototype to monitor patients in acute care, especially during influenza season. The results of this study provided baseline data on respiratory illness surveillance and demonstrated that future research, including prospective studies, is warranted in acute care facilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although it is widely assumed that temperature affects pollutant toxicity, few studies have actually investigated this relationship. Moreover, such research as has been done has involved constant temperatures; circumstances which are rarely, if ever, actually experienced by north temperate, littoral zone cyprinid species. To investigate the effects of temperature regime on nickel toxicity in goldfish (Carassius auratus L.), 96- and 240-h LCSO values for the heavy metal pollutant, nickel (NiCI2.6H20), were initially determined at 2DoC (22.8 mg/L and 14.7 mg/L in artificially softened water). Constant temperature bioassays at 10°C, 20°C and 30°C were conducted at each of 0, 240-h and 96-h LCSO nickel concentrations for 240 hours. In order to determine the effects of temperature variation during nickel exposure it was imperative that the effects of a single temperature change be investigated before addressing more complex regimes. Single temperature changes of + 10°C or -10°C were imposed at rates of 2°C/h following exposures of between 24 hand 216 h. The effects of a single temperature change on mortality, and duration of toxicant exposure at high and low temperatures were evaluated. The effects of fluctuating temperatures during exposure were investigated through two regimes. The first set of bioassays imposed a sinewave diurnal cycle temperature (20.±.1DOC) throughout the 10 day exposure to 240-h LeSO Ni. The second set of investigations approximated cyprinid movement through the littoral zone by imposing directionally random temperature changes (±2°C at 2-h intervals), between extremes of 10° and 30°C, at 240-h LC50 Ni. Body size (i.e., total length, fork length, and weight) and exposure time were recorded for all fish mortalities. Cumulative mortality curves under constant temperature regimes indicated significantly higher mortality as temperature and nickel concentration were increased. At 1DOC no significant differences in mortality curves were evident in relation to low and high nickel test concentrations (Le., 16 mg/L and 20 mg/L). However at 20°C and 30°C significantly higher mortality was experienced in animals exposed to 20 mg/L Ni. Mortality at constant 10°C was significantly lower than at 30°C with 16 mg/L and was significantly loWer than each of 2DoC and 39°C tanks at 20 mg/L Ni exposure. A single temperature shift from 20°C to 1DoC resulted in a significant decrease in mortality rate and conversely, a single temperature shift from 20°C to 30°C resulted in a significant increase in mortality rate. Rates of mortality recorded during these single temperature shift assays were significantly different from mortality rates obtained under constant temperature assay conditions. Increased Ni exposure duration at higher temperatures resulted in highest mortality. Diurnally cycling temperature bioassays produced cumulative mortality curves approximating constant 20°C curves, with increased mortality evident after peaks in the temperature cycle. Randomly fluctuating temperature regime mortality curves also resembled constant 20°C tanks with mortalities after high temperature exposures (25°C - 30°C). Some test animals survived in all assays with the exception of the 30°C assays, with highest survival associated with low temperature and low Ni concentration. Post-exposure mortality occurred most frequently in individuals which had experienced high Ni concentrations and high temperatures during assays. Additional temperature stress imposed 2 - 12 weeks post exposure resulted in a single death out of 116 individuals suggesting that survivors are capable of surviving subsequent temperature stresses. These investigations suggest that temperature significantly and markedly affects acute nickel toxicity under both constant and fluctuating temperature regimes and plays a role in post exposure mortality and subsequent stress response.