4 resultados para acute phase reaction
em Brock University, Canada
Resumo:
Rates and products have been determined for the thermal decomposition of bis diphenyl methyl peroxide and diphenyl methyl tert* butyl peroxide at 110@~145@C* The decomposition was uniformly unimolecular with activation energies for the bis diphenyl methyl peroxide in tetrachloroethylene* toluene and nitrobenzene 26,6* 28*3f and 27 Kcals/mole respectively. Diphenyl methyl tert* butyl peroxide showed an activation energy of 38*6 Kcals/mole* About 80-90% of the products in the case of diphenyl methyl peroxide could be explained by the concerted process, this coupled with the negative entropies of activation obtained is a conclusive evidence for the reaction adopting a major concerted path* All the products in the case of diphenyl methyl peroxide could be explained by known reactions of alkoxy radicals* About 80-85% of tert butanol and benzophenone formed suggested far greater cage disproportionation than diffusing apart* Rates of bis triphenyl methyl peroxide have been determined in tetrachloroethylene at 100-120@C* The activation energy was found to be 31 Kcals/mole*
Resumo:
One of the most challenging tasks for a synthetic organic chemist today, is the development of chemo, regio, and stereoselective methodologies toward the total synthesis of macromolecules. r . The objective of my thesis was to develop methodologies towards this end. The first part of my project was to develop highly functionalized chirons from D-glucose, a cheap, chiral starting material, to be utilized in this capacity. The second part of the project dealt with modifying the carbon-carbon bond forming Suzuki reaction, which is utilized quite often as a means of combining molecular sub units in total synthesis applications. As previously stated the first area of the project was to develop high value chirons from D-glucose, but the mechanism of their formation was also investigated. The free radical initiated oxidative fragmentation of benzylidene acetals was investigated through the use of several test-case substrates in order to unravel the possible mechanistic pathways. This was performed by reacting the different acetals with N-bromosuccinimide and benzoyl peroxide in chlorobenzene at 70^C in all cases. Of the three mechanistic pathways discussed in the literature, it was determined, from the various reaction products obtained, that the fragmentation of the initial benzylic radical does not occur spontaneously but rather, oxidation proceeds to give the benzyl bromide, which then fragments via a polar pathway. It was also discovered that the regioselectivity of the fragmentation step could be altered through incorporation of an allylic system into the benzylidene acetal. This allows for the acquisition of a new set of densely functionalized. chiral, valuable synthetic intermediates in only a few steps and in high yields from a-Dglucose. The second part of the project was the utilization of the phosphonium salt room temperature ionic liquid tetradecyltrihexylphosphonium chloride (THPC) as an efficient reusable medium for the palladium catalyzed Suzuki cross-coupling reaction of aryl halides, including aryl chlorides, under mild conditions. The cross-coupling reactions were found to proceed in THPC containing small amounts of water and toluene using potassium phosphate and 1% Pd2(dba)3. Variously substituted iodobenzenes, including electron rich derivatives, reacted efficiently in THPC with a variety of arylboronic acids and afforded complete conversion within 1 hour at 50 ^C. The corresponding aryl bromides also reacted under these conditions with the addition of a catalytic amount of triphenylphosphine that allowed for complete conversion and high isolated yields. The reactions involving aryl chlorides were considerably slower, although the addition of triphenylphosphine and heating at 70 ^C allowed high conversion of electron deficient derivatives. Addition of water and hexane to the reaction products results in a triphasic system in which the top hexane phase contained the biaryl products, the palladium catalyst remained fully dissolved in the central THPC layer, while the inorganic salts were extracted into the lower aqueous phase. The catalyst was then recycled by removing the top and bottom layers and adding the reagents to the ionic liquid which was heated again at 50 ^C; resulting in complete turnover of iodobenzene. Repetition of this procedure gave the biphenyl product in 82-97% yield (repeated five times) for both the initial and recycled reaction sequences.
Resumo:
There is a paucity of studies comparing social buffering in adolescents and adults, despite their marked differences in social behaviour. I investigated whether greater effects of social buffering on plasma corticosterone concentrations and expression of Zif268 in neural regions after an acute stressor would be found in adolescent compared with adult rats. Samples were obtained before and after one hour of isolation stress and after either one or three hours of recovery back in the colony with either a familiar or unfamiliar cage partner. Adolescent and adult rats did not differ in plasma concentrations of corticosterone at any time point. Corticosterone concentrations were higher after one hour isolation than at baseline (p < 0.001), and rats with a familiar partner during the recovery phase had lower corticosterone concentrations than did rats with an unfamiliar partner (p = 0.02). Zif268 immunoreactive cell counts were higher in the arcuate nucleus in both age groups after isolation (p = 0.007) and higher in the paraventricular nucleus of adolescents compared with adults during the recovery phase irrespective of partner familiarity. There was a significant decrease in immunoreactive cell counts after one hour isolation compared to baseline in the basolateral amygdala, central nucleus of the amygdala, and in the pyramidal layer of the hippocampus (all p < 0.05). An effect of partner familiarity on Zif268 immunoreactive cell counts was found in the granule layer of the dentate gyrus irrespective of age (higher in those with a familiar partner, p = 0.03) and in the medial prefrontal cortex in adolescents (higher with an unfamiliar partner, p = 0.02). Overall, the acute stress and partner familiarity produced a similar pattern of results in adolescents and adults, with both age groups sensitive to the social context.
Resumo:
The Dudding group is interested in the application of Density Functional Theory (DFT) in developing asymmetric methodologies, and thus the focus of this dissertation will be on the integration of these approaches. Several interrelated subsets of computer aided design and implementation in catalysis have been addressed during the course of these studies. The first of the aims rested upon the advancement of methodologies for the synthesis of biological active C(1)-chiral 3-methylene-indan-1-ols, which in practice lead to the use of a sequential asymmetric Yamamoto-Sakurai-Hosomi allylation/Mizoroki Heck reaction sequence. An important aspect of this work was the utilization of ortho-substituted arylaldehyde reagents which are known to be a problematic class of substrates for existing asymmetric allylation approaches. The second phase of my research program lead to the further development of asymmetric allylation methods using o-arylaldehyde substrates for synthesis of chiral C(3)-substituted phthalides. Apart from the de novo design of these chemistries in silico, which notably utilized water-tolerant, inexpensive, and relatively environmental benign indium metal, this work represented the first computational study of a stereoselective indium-mediated process. Following from these discoveries was the advent of a related, yet catalytic, Ag(I)-catalyzed approach for preparing C(3)-substituted phthalides that from a practical standpoint was complementary in many ways. Not only did this new methodology build upon my earlier work with the integrated (experimental/computational) use of the Ag(I)-catalyzed asymmetric methods in synthesis, it provided fundamental insight arrived at through DFT calculations, regarding the Yamamoto-Sakurai-Hosomi allylation. The development of ligands for unprecedented asymmetric Lewis base catalysis, especially asymmetric allylations using silver and indium metals, followed as a natural extension from these earlier discoveries. To this end, forthcoming as well was the advancement of a family of disubstituted (N-cyclopropenium guanidine/N-imidazoliumyl substituted cyclopropenylimine) nitrogen adducts that has provided fundamental insight into chemical bonding and offered an unprecedented class of phase transfer catalysts (PTC) having far-reaching potential. Salient features of these disubstituted nitrogen species is unprecedented finding of a cyclopropenium based C-H•••πaryl interaction, as well, the presence of a highly dissociated anion projected them to serve as a catalyst promoting fluorination reactions. Attracted by the timely development of these disubstituted nitrogen adducts my last studies as a PhD scholar has addressed the utility of one of the synthesized disubstituted nitrogen adducts as a valuable catalyst for benzylation of the Schiff base N-diphenyl methylene glycine ethyl ester. Additionally, the catalyst was applied for benzylic fluorination, emerging from this exploration was successful fluorination of benzyl bromide and its derivatives in high yields. A notable feature of this protocol is column-free purification of the product and recovery of the catalyst to use in a further reaction sequence.