2 resultados para Zero-inflated binomial regression

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heritability of multiple mating in female Gryllus integer crickets was studied. Two preliminary experiments were conducted to determine when females first mate following the post-imaginal moult and to ascertain whether constant exposure to males affects female mating rate. Female Q. integer first mated at an average age of 3.6 days (S.D. = 2.3, Range = 0-8 days) . Exposing female crickets to courting males 24 hr daily did not significantly alter mating rates from those females in contact with males for only 5 hr per day. A heritability value of 0.690 ± 0.283 was calculated for multiple mating behavior in female Q. integer using a parent-offspring regression approach. Parental females mated between land 30 times (x 9.8, S . D. = 6. 6 ) and offspring matings ranged from 0 to 26 times (x 7 .3, S.D. = 3.4). Multiple mating is probably a sexually selected trait which functions as a mechanism of female choice and increases reproductive success through increased offspring production. Classical theory suggests that traits intimately related with fitness should exhibit negligible heritable variation. However, this study has shown that multiple mating, a trait closely linked with reproductive fitness, exhibits substantial heritability. These results are in concordance with a growing body of empirical evidence suggesting many fitness traits in natural populations demonstrate heritabilities far removed from zero. Various mechanisms which may maintain heritable variation for female multiple mating in wild, outbred Q. integer populations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis is to investigate some open problems in the area of combinatorial number theory referred to as zero-sum theory. A zero-sequence in a finite cyclic group G is said to have the basic property if it is equivalent under group automorphism to one which has sum precisely IGI when this sum is viewed as an integer. This thesis investigates two major problems, the first of which is referred to as the basic pair problem. This problem seeks to determine conditions for which every zero-sequence of a given length in a finite abelian group has the basic property. We resolve an open problem regarding basic pairs in cyclic groups by demonstrating that every sequence of length four in Zp has the basic property, and we conjecture on the complete solution of this problem. The second problem is a 1988 conjecture of Kleitman and Lemke, part of which claims that every sequence of length n in Zn has a subsequence with the basic property. If one considers the special case where n is an odd integer we believe this conjecture to hold true. We verify this is the case for all prime integers less than 40, and all odd integers less than 26. In addition, we resolve the Kleitman-Lemke conjecture for general n in the negative. That is, we demonstrate a sequence in any finite abelian group isomorphic to Z2p (for p ~ 11 a prime) containing no subsequence with the basic property. These results, as well as the results found along the way, contribute to many other problems in zero-sum theory.