9 resultados para Women--Employment--New York (State)--New York
em Brock University, Canada
Resumo:
Margaret was an only child who grew up on a farm just east of Cayuga, Ontario. After high school, Margaret attended Hamilton Teacher’s College and took a position with Grantham Public School Board and taught at Power Glen school. Margaret was married in 1962 and had 2 children, a daughter and a son in 1963 and 1964, respectively. Margaret left her teaching job to raise her children. Margaret was very creative and artistic and during this time, focused on these talents, which included painting, graphic arts and sewing. Margaret was also an accomplished pianist. In her 40’s, Margaret enrolled at Brock University and in 1989 obtained a Honors Bachelor of Arts degree with First-Class Honors in Sociology. In partial fulfillment of her Honors B.A. she completed her thesis that is entitled ; The State and Liberal Feminism: The Ontario Government’s “Business Ownership For Women Program”. While living in St. Catharines, Margaret attended York University and graduated with a Master of Arts in Sociology in 1992 where her studies focused on women’s issues. Margaret received a scholarship from York University and was a teaching assistant. Margaret stayed on at York University and completed her academic requirements for a Doctorate degree in Sociology. Her dissertation was on self employed women in St. Catharines at the beginning of WWII -- not the” Rosie the Riveters” who took over jobs formerly held by men who had to go off to fight World War II, but women who ran their own businesses when that was still unusual. Margaret completed the research for her thesis but did not complete her written thesis as she made a difficult decision to put her academic work on hold in the mid-1990’s and she returned to her love for the arts, although she always remained a voracious reader and interested in women’s issues. In the last decade of her life, she took up quilting with a passion, which she referred to as fabric arts. Margaret loved colour and being non-traditional. Margaret had been a quilting instructor at the Flemington College for Fine Arts in Haliburton. In 1997, Margaret founded Project Smile in the St. Catharines region, a non-profit group who make quilts for children with cancer. Margaret was also the President of the Niagara Heritage Quilters’ Guild in 2006-2007 and was very involved with the Local Council of Women.
Resumo:
A comprehensive elemental, isotopic and microstructural analyses was undertaken of brachiopod calcites from the Hamilton Group (Middle Devonian), Clinton Group (Middle Silurian) and Middle to Upper Ordovician strata of Ontario and New York State. The majority of specimens were microstructurally and chemically preserved in a pristine state, although a number of specimens show some degree of post-depositional alteration. Brachiopod calcites from the Hamilton and Clinton Groups were altered by marine derived waters whereas Trenton Group (Middle Ordovician) brachiopods altered in meteorically derived fluids. Analysis of the elemental and isotopic compositions of pristine Hamilton Group brachiopods indicates there are several chemical relationships inherent to brachiopod calcite. Taxonomic differentiation of Mg, Sr and Na contents was evident in three co-occuring species from the Hamilton Group. Mean Mg contents of pristine brachiopods were respectively Athyris spiriferoides (1309ppm), Mucrospirifer mucronatus (1035ppm) and Mediospirifer audacula (789ppm). Similarly, taxonomic differentiation of shell calcite compositions was observed in co-occuring brachiopods from the Clinton Group (Middle Silurian) and the Trenton Group (Middle Ordovician). The taxonomic control of elemental regulation into shell calcite is probably related to the slightly different physiological systems and secretory mechanisms. A relationship was observed in Hamilton Group species between the depth of respective brachiopod communities and their Mg, Sr and Na contents. These elements were depleted in the shell calcites of deeper brachiopods compared to their counterparts in shallower reaches. Apparently shell calcite elemental composition is related to environmental conditions of the depositional setting, which may have controlled the secretory regime, mineral morphology of shell calcite and precipitation rates of each species. Despite the change in Mg, Sr and Na contents between beds and formations in response to environmental conditions, the taxonomic differentiation of shell calcite composition is maintained. Thus, it may be possible to predict relative depth changes in paleoenvironmental reconstructions using brachiopod calcite. This relationship of brachiopod chemistry to depth was also tested within a transgressiveregressive (T-R) cycle in the Rochester Shale Formation (Middle Silurian). Decreasing Mg, Sr and Na contents were observed in the transition from the shallow carbonates of the Irondequoit Formation to the deeper shales of the lowest 2 m of Rochester Shale. However, no isotopic and elemental trends were observed within the entire T-R cycle which suggests that either the water conditions did not change significantly or that the cycle is illusory. A similar relationship was observed between the Fe and Mn chemistries of shell calcite and redox/paleo-oxygen conditions. Hamilton Group brachiopods analysed from deeper areas of the shelf are enriched in Mn and Fe relative to those from shallow zones. The presence of black shales and dysaerobic faunas, during deposition of the Hamilton Group, suggests that the waters of the northern Appalachian Basin were stratified. The deeper brachiopods were marginally positioned above an oxycline and their shell calcites reflect periodic incursions of oxygen depleted water. Furthermore, analysis of Dalmanella from the black shales of the Collingwood Shale (Upper Ordovician) in comparison to those from the carbonates of the Verulam Formation (Middle Ordovician) confirm the relationship of Fe and Mn contents to periodic but not permanent incursions of low oxygen waters. The isotopic compositions of brachiopod calcite found in Hamilton Group (813C; +2.5% 0 to +5.5% 0; 8180 -2.50/00 to -4.00/00) and Clinton Group (813C; +4.00/00 to +6.0; 8180; -1.8% 0 to -3.60/ 00) are heavier than previously reported. Uncorrected paleotemperatures (assuming normal salinity, 0% 0 SMOW and no fractionation effects) derived from these isotopic values suggest that the Clinton sea temperature (Middle Silurian) ranged from 18°C to 28°C and Hamilton seas (Middle Devonian) ranged between 24°C and 29°C. In addition, the isotopic variation of brachiopod shell calcite is significant and is related to environmental conditions. Within a single time-correlative shell bed (the Demissa Bed; Hamilton Group) a positive isotopic shift of 2-2.5% 0 in 013C compositions and a positive shift of 1.0-1.50/00 in 0180 composition of shell calcite is observed, corresponding with a deepening of brachiopod habitats toward the axis of the Appalachian Basin. Moroever, a faunal succession from deeper Ambocoelia dominated brachiopod association to a shallow Tropidoleptus dominated assocation is reflected by isotopic shifts of 1.0-1.50/00. Although, other studies have emphasized the significance of ±20/oo shifts in brachiopod isotopic compositions, the recognition of isotopic variability in brachiopod calcite within single beds and within depositional settings such as the Appalachian Basin has important implications for the interpretation of secular isotopic trends. A significant proportion of the variation observed isotopic distribution during the Paleozoic is related to environmental conditions within the depositional setting.
Resumo:
The drumlin sediments at Chimney Bluffs, New York appear to represent a block-inmatrix style glacial melange. This melange comprises sand stringers, lenses and intraclasts juxtaposed in an apparently massive diamicton. Thin section examination of these glacigenic deposits has revealed microstructures indicative of autokinetic subglacial defonnation which are consistent with a deformable bed origin for the diamicton. These features include banding and. necking of matrix grains, oriented plasma fabrics and the formation of pressure shadows at the long axis ends of elongate clasts. Preservation of primary stratification within the sand intraclasts appears to suggest that these features were pre-existing up-ice deposits that were frozen, entrained, then deposited as part of a defonning till layer beneath an advancing ice sheet. Multi-directional micro-shearing within the sand blocks is thought to reflect the frozen nature of the sand units in such a high strain environment. It is also contended that dewatering of the sediment pile leading to the eventual immobilisation of the defonning till layer was responsible for opening sub-horizontal fissures within the diamicton. These features were subsequently infilled with mass flow poorly sorted sands and silts which were subjected to ductile defonnation during the waning stages of an actively deforming till layer. Microstructures indicative of the dewatering processes in the sand units include patches of fine-grained particles within a coarser-grained matrix and the presence of concentrated zones of translocated clays. However, these units were probably confined within an impermeable diamicton casing that prevented massive pore water influxes from the deforming till layer~ Hence, these microstructures probably reflect localised dewatering of the sand intraclasts. A layered subglacial shear zone model is proposed for the various features exhibited by the drumlin sediments. The complexity of these structures is explained in terms of ii superposing deformation styles in response to changing pore water pressures. Constructional glaciotectonics, as implied by the occurrence of sub-horizontal fissuring, is suggested as the mechanism for the stacking of the sand intraclast units within the diamicton. The usefulness of micromorphology in complimenting the traditional sedimentology of glacigenic deposits is emphasised by the current study. An otherwise massive diamicton was shown to contain microstructures indicative of the very high strain rates expected in a complexly deforming till layer. . It is quite obvious from this investigation that the classification of diamictons needs to be re-examined for evidence of microstructures that could lead to the re-interpretation of diamicton forming processes. RESUME Le pacquet de sediments drumlinaire de Chimney Bluffs, New York, represent un "bloc-en-matrice" genre de melange glaciale. Des structures microscopique comprennent l'evidence pour la defonnation intrinseque attribuee a l'origine lit non resistant du drumlin. PreselVation des structures primaires au coeur des blocs arenaces suggere que ceux sont des depots preexistant qui furent geles, entraines et par la suite sedimentes au milieu d'une couche de debris sous-glaciaires en voie de deformation. Des failles microscopiques a l'interieur des blocs arenaces appuient aussi l'idee d'un bloc cohesif (c'est-a-dire gele) au centre d'un till non resistant. Des implications significatives s'emergent de cette etude pour les conditions sous-glaciaire et les processus de la formation des drumlin.
Resumo:
Notes by F. L. Olmsted.
Resumo:
Seven pages of proceedings of the Senate and Assembly of the State of New York dated February 27, March 1 and March 6, 1823. Proceedings include a report of the Committee of the Canal System , Memorial of Samuel Wilkeson on the subject of Black Rock and Buffalo Harbors, a report from the Surveyor General of the land reserved to the state at Black Rock, and an Act to incorporate the Niagara Canal Company.
Resumo:
Signed by Jacob Morris, President, and William Henderson, Secretary.
Resumo:
Alexander McLeod, a British subject, was tried for the murder of Amos Durfee and as an accomplice in the burning of the steamer Caroline, in the Niagara River, during the Canadian rebellion in 1837-1838.
Resumo:
Message from the President of the United States transmitting a letter from the Marshal of the Northern District of the State of New York, respecting Disturbances on the Canadian Frontier.
Resumo:
While billions of farmed animals are immobilized within agribusiness, every year some of these animals manage to break free. This thesis examines the stories of those who flee slaughterhouses and the public response to these individuals. My objective is to understand how animals resist and the role that their stories play in disrupting the ways that humans, particularly as consumers, are distanced from the violence of animal enterprises. Included are six vignettes that allow for an in-depth case study of those who have escaped within New York State. Located in the interdisciplinary field of critical animal studies, my inquiry draws upon new animal geographies, transnational feminisms, and critical discourse analysis. This contribution provides discussion of farmed animal resistance in particular and compares experiences and representations of their resistance from both the “view from below,” which is learned through the animals’ caretakers, and a “view from above,” which is gleaned from their representations in corporate-driven mainstream media.