2 resultados para Wavelength filtering devices
em Brock University, Canada
Resumo:
Optimization of wave functions in quantum Monte Carlo is a difficult task because the statistical uncertainty inherent to the technique makes the absolute determination of the global minimum difficult. To optimize these wave functions we generate a large number of possible minima using many independently generated Monte Carlo ensembles and perform a conjugate gradient optimization. Then we construct histograms of the resulting nominally optimal parameter sets and "filter" them to identify which parameter sets "go together" to generate a local minimum. We follow with correlated-sampling verification runs to find the global minimum. We illustrate this technique for variance and variational energy optimization for a variety of wave functions for small systellls. For such optimized wave functions we calculate the variational energy and variance as well as various non-differential properties. The optimizations are either on par with or superior to determinations in the literature. Furthermore, we show that this technique is sufficiently robust that for molecules one may determine the optimal geometry at tIle same time as one optimizes the variational energy.
Resumo:
One way of exploring the power of sound in the experience and constitution of space is through the phenomenon of personal listening devices (PLDs) in public environments. In this thesis, I draw from in-depth interviews with eleven Brock University students in S1. Catharines, Ontario, to show how PLDs (such as MP3 players like the iPod) are used to create personalized soundscapes and mediate their public transit journeys. I discuss how my interview participants experience the space-time of public transit, and show how PLDs are used to mediate these experiences in acoustic and non-acoustic ways. PLD use demonstrates that acoustic and environmental experiences are co-constitutive, which highlights a kinaesthetic quality of the transit-space. My empirical findings show that PLDs transform space, particularly by overlapping public and private appropriations of the bus. I use these empirical findings to discuss the PLD phenomenon in the theoretical context of spatiality, and more specifically, acoustic space. J develop the ontological notion of acoustic space, stating that space shares many of the properties of sound, and argue that sound is a rich epistemological tool for understanding and explaining our everyday experiences.