9 resultados para Visual Basic (Programming Language)
em Brock University, Canada
Resumo:
This thesis will introduce a new strongly typed programming language utilizing Self types, named Win--*Foy, along with a suitable user interface designed specifically to highlight language features. The need for such a programming language is based on deficiencies found in programming languages that support both Self types and subtyping. Subtyping is a concept that is taken for granted by most software engineers programming in object-oriented languages. Subtyping supports subsumption but it does not support the inheritance of binary methods. Binary methods contain an argument of type Self, the same type as the object itself, in a contravariant position, i.e. as a parameter. There are several arguments in favour of introducing Self types into a programming language (11. This rationale led to the development of a relation that has become known as matching [4, 5). The matching relation does not support subsumption, however, it does support the inheritance of binary methods. Two forms of matching have been proposed (lJ. Specifically, these relations are known as higher-order matching and I-bound matching. Previous research on these relations indicates that the higher-order matching relation is both reflexive and transitive whereas the f-bound matching is reflexive but not transitive (7]. The higher-order matching relation provides significant flexibility regarding inheritance of methods that utilize or return values of the same type. This flexibility, in certain situations, can restrict the programmer from defining specific classes and methods which are based on constant values [21J. For this reason, the type This is used as a second reference to the type of the object that cannot, contrary to Self, be specialized in subclasses. F-bound matching allows a programmer to define a function that will work for all types of A', a subtype of an upper bound function of type A, with the result type being dependent on A'. The use of parametric polymorphism in f-bound matching provides a connection to subtyping in object-oriented languages. This thesis will contain two main sections. Firstly, significant details concerning deficiencies of the subtype relation and the need to introduce higher-order and f-bound matching relations into programming languages will be explored. Secondly, a new programming language named Win--*Foy Functional Object-Oriented Programming Language has been created, along with a suitable user interface, in order to facilitate experimentation by programmers regarding the matching relation. The construction of the programming language and the user interface will be explained in detail.
Resumo:
Formal verification of software can be an enormous task. This fact brought some software engineers to claim that formal verification is not feasible in practice. One possible method of supporting the verification process is a programming language that provides powerful abstraction mechanisms combined with intensive reuse of code. In this thesis we present a strongly typed functional object-oriented programming language. This language features type operators of arbitrary kind corresponding to so-called type protocols. Sub classing and inheritance is based on higher-order matching, i.e., utilizes type protocols as basic tool for reuse of code. We define the operational and axiomatic semantics of this language formally. The latter is the basis of the interactive proof assistant VOOP (Verified Object-Oriented Programs) that allows the user to prove equational properties of programs interactively.
Resumo:
Dynamic logic is an extension of modal logic originally intended for reasoning about computer programs. The method of proving correctness of properties of a computer program using the well-known Hoare Logic can be implemented by utilizing the robustness of dynamic logic. For a very broad range of languages and applications in program veri cation, a theorem prover named KIV (Karlsruhe Interactive Veri er) Theorem Prover has already been developed. But a high degree of automation and its complexity make it di cult to use it for educational purposes. My research work is motivated towards the design and implementation of a similar interactive theorem prover with educational use as its main design criteria. As the key purpose of this system is to serve as an educational tool, it is a self-explanatory system that explains every step of creating a derivation, i.e., proving a theorem. This deductive system is implemented in the platform-independent programming language Java. In addition, a very popular combination of a lexical analyzer generator, JFlex, and the parser generator BYacc/J for parsing formulas and programs has been used.
Resumo:
Genetic Programming (GP) is a widely used methodology for solving various computational problems. GP's problem solving ability is usually hindered by its long execution times. In this thesis, GP is applied toward real-time computer vision. In particular, object classification and tracking using a parallel GP system is discussed. First, a study of suitable GP languages for object classification is presented. Two main GP approaches for visual pattern classification, namely the block-classifiers and the pixel-classifiers, were studied. Results showed that the pixel-classifiers generally performed better. Using these results, a suitable language was selected for the real-time implementation. Synthetic video data was used in the experiments. The goal of the experiments was to evolve a unique classifier for each texture pattern that existed in the video. The experiments revealed that the system was capable of correctly tracking the textures in the video. The performance of the system was on-par with real-time requirements.
Resumo:
The topic of this research was alternative programming in secondary public education. The purpose of this research was to explore the perceived effectiveness of two public secondary programs that are aJternative to mainstream or "regular" education. Two case study sites were used to research diverse ends of the aJtemative programming continuum. The first case study demonstrated a gifted program and the second demonstrated a behavioral program. Student needs were examined in terms of academic needs, emotional needs, career needs, and social needs. Research conducted in these sites examined how the students, teachers, onsite staff, and program administrators perceived that individual needs were met and unmet in these two programs. The study was qualitative and exploratory, using deductive and inductive research techniques. Similar themes of best practice that were identified in the case study sites aided in the development of a teaching and learning model. Four themes were identified as important within the case study sites. These themes included the commitment and motivation of teachers and the support of administration in the gifted program, and the importance of location and the flow of information and communication in the behavior program. Six themes emerged that were similar across the case study sites. These themes included the individual nature of programming, recognition of student achievement, the alternative program as a place of safety and community, importance of interpersonal capacity, priority of basic needs, and, finally, matching student capacity with program expectations. The model incorporates these themes and is designed as a resource for teachers, program administrators, parents, and policy makers of alternative educational programs.
Resumo:
This qualitative investigation examined the nature of 7 highly artistic visual arts students at 2 secondary schools in southcentral Ontario. Through interviews, questionnaires, observations, and artwork documents, this study attempted to understand these highly artistic students in terms of creativity, motivation, social and emotional perspectives, and cognitive processes. Data collection occuned over a 3-monlh period. and the data analysis program NVivo 7 was used for coding to develop themes and categories for organizing data. The findings of this study illustrate the significant place that \ isual arts can lake in the growth and development for the youth of today. Participants idcniificd dcxclopnig critical thinking and problem-solving skills, taking risks, and meeting challenges ilirouuh their engagement in the creative process. The transferability of these skills \\ as referenced to numerous aspects of their lives. By enhancing individual perspectives through the study of visual arts, their local and world connections were extended, and environmental and societal concerns evolved. In addition, the communicative opportunities that visual arts provided for these students in terms of personal expression provided emotional health and paths of personal discovery. Through the participants' production of artwork with the many stages this involves, combined with insight into their needs, the participants relayed miportant suggestions for programming enhancements and educational settmgs lor \ isiial arts classrooms. These suggestions are meaningful for educators and curriculum developers of the future.
Resumo:
This action research observes a second year Japanese class at a university where foreign language courses are elective for undergraduate students. In this study, using the six strategies to teach Japanese speech acts that Ishihara and Cohen (2006) suggested, I conducted three classes and analyzed my teaching practice with a critical friend. These strategies assist learners toward the development of their understanding of the following Japanese speech acts and also keep the learners to use them in a manner appropriate to the context: (I) invitation and refusal; (2) compliments; and (3) asking for a permission. The aim of this research is not only to improve my instruction in relation to second language (L2) pragmatic development, but also to raise further questions and to develop future research. The findings are analyzed and the data derived from my journals, artifacts, students' work, observation sheets, interviews with my critical friend, and pretests and posttests are coded and presented. The analysis shows that (I) after my critical friend encouraged my study and my students gave me some positive comments after each lesson, I gained confidence in teaching the suggested speech acts; (2) teaching involved explaining concepts and strategies, creating the visual material (a video) showing the strategies, and explaining the relationship between the strategy and grammatical forms and samples of misusing the forms; (3) students' background and learning styles influenced lessons; and (4) pretest and posttests showed that the students' Icvel of their L2 appropriate pragmatics dramatically improved after each instruction. However, after careful observation, it was noted that some factors prevented students from producing the correct output even though they understood the speech act differences.
Resumo:
Three dimensional model design is a well-known and studied field, with numerous real-world applications. However, the manual construction of these models can often be time-consuming to the average user, despite the advantages o ffered through computational advances. This thesis presents an approach to the design of 3D structures using evolutionary computation and L-systems, which involves the automated production of such designs using a strict set of fitness functions. These functions focus on the geometric properties of the models produced, as well as their quantifiable aesthetic value - a topic which has not been widely investigated with respect to 3D models. New extensions to existing aesthetic measures are discussed and implemented in the presented system in order to produce designs which are visually pleasing. The system itself facilitates the construction of models requiring minimal user initialization and no user-based feedback throughout the evolutionary cycle. The genetic programming evolved models are shown to satisfy multiple criteria, conveying a relationship between their assigned aesthetic value and their perceived aesthetic value. Exploration into the applicability and e ffectiveness of a multi-objective approach to the problem is also presented, with a focus on both performance and visual results. Although subjective, these results o er insight into future applications and study in the fi eld of computational aesthetics and automated structure design.
Resumo:
This thesis focuses on developing an evolutionary art system using genetic programming. The main goal is to produce new forms of evolutionary art that filter existing images into new non-photorealistic (NPR) styles, by obtaining images that look like traditional media such as watercolor or pencil, as well as brand new effects. The approach permits GP to generate creative forms of NPR results. The GP language is extended with different techniques and methods inspired from NPR research such as colour mixing expressions, image processing filters and painting algorithm. Colour mixing is a major new contribution, as it enables many familiar and innovative NPR effects to arise. Another major innovation is that many GP functions process the canvas (rendered image), while is dynamically changing. Automatic fitness scoring uses aesthetic evaluation models and statistical analysis, and multi-objective fitness evaluation is used. Results showed a variety of NPR effects, as well as new, creative possibilities.