4 resultados para Ventilator-induced lung injury

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis compares the responses of regenerating forelimb tissues of the newt Notophthalmu..f vlridescens to the stresses of hyperthermia and ID.echanical injury of amputation. In particular, both quantitative and qualitative changes in the synthesis of soluble proteins in stump tissues, including those of the heat shock protein family (HSP70-1ike) were examined. Results from SDS-PAGEfluorography indicate that the trauma of amputation mimics the heat shock response both quantitatively and temporally in its transient repression of the synthesis of most normal cellular proteins, and qualitatively. in the locaJized expression of two unique proteins (hsp30 and hsp70). Fluorography of proteins separated by twodimensional gets revealed that thelCl4:alizedt amputation induced 70kDa protein (amp70) was distinct from the more basic newt hsp/hsc70 isoforms. Although limb amputation resulted in an increase in the synthesis of HSP70 mRNA analogous to that induced by heat 3.b.OCKf amp70 did not cross-react with murine monoclonal antibodies directed against both the inducible and cognate HSP70 proteins of the human. Thus, the possible relationship of amp70 to other members of the HSP70-1ike protein family remains unclear. Western analyses indicated that the levels of the constitutive form of HSP70 (hsc70) were found to be regulated in a stage-dependent manner in the distal stump tissues of the regen,erating forelimb of the newt. The highest levels were found in the mid-late bud stage, a period during which rapidly dividing blastema cells begin to redifferentiate in a proximodistal direction. Immediately after amputation) hsc70 synthesis and accumulation was depressed below steady-state levels measured in the unamputated limb~ The results are discussed in light of a possible role for HSPs and amputatio~ induced proteins in the epimorphic regeneration of the amphibian limb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the cognitive and emotional sequelae following mild head injury (MHI; e.g., concussion) in high-functioning individuals and whether persons with MHI pre~ent, both physiologically and via self-report, in a manner different from (i.e., underaroused) that of persons who have no history of head injury. We also investigated the effect arousal state ~as on the cognitive performance of this population. Using a quasiexperimental research design (N = 91), we examined changes in attention, working memory, and cognitive flexibility (subtests ofthe WAIS-III, 1997,WMS-III, 1997, & DKEFS, 2002) as a function of manipulated arousal (i.e., induced psychosocial stress/activation; reduced activation/relaxation). In addition to self-reported arousal and state anxiety (State-Trait Anxiety Inventory; Speilberger, 1983a) measures, physiological indices of arousal state (i.e., electrodermal responsivity, heart rate, and respiration activity) were recorded (via Polygraph Professional Suite, 2008) across a 2.5 hour interval while completing various cognitive tasks. Students also completed the Post-concussive Symptom Checklist (Gouvier et aI., 1992). The results demonstrate that university students who report a history ofMHI (i.e., "altered state of consciousness") experience significantly lower levels of anxiety, were physiologically underaroused, and were less responsive to stressors in their environment, compared to their non-~HI cohorts. As expected, cognitive flexibility (but not other neuropsychological measures of cognition) was advantaged with increased stress, and disadvantaged with reduced stress, in persons with reported MHI, but not for those without reported MHI which provided limited support for our hypothesis. Further, university students who had no complaints related to their previous MHI endorsed a greater number of traditional post-concussive symptoms in terms of intensity, duration and frequency as compared to students who did not report a MHI. The underarousal in traumatic brain injury has been associated with (ventromedial prefrontal cortex) VMPFC disruption and may be implicated in MHI generally. Students who report sustaining a previous MHI may be less able to physiologically respond and/or cognitively appraise, stressful experiences as compared to their no-MHI cohort and experience persistent, long-lasting consequences despite the subtle nature of a history of head injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vitamin A metabolite, retinoic acid (RA) is known to play an important role in the development, patterning and regeneration of nervous tissue, both in the embryo and in the adult. Classically, RA is known to mediate the transcription of target genes through the binding and activation ofits nuclear receptors: the retinoic acid receptors (RARs) and retinoid X receptors (RXRs). Recently, mounting evidence from many animal models has implicated a number of RA-mediated effects operating independently of gene transcription, and thus highlights nove~ nongenornic actions of RA. For example, recent work utilizing cultured neurons from the pond snaa Lymnaea stagnalis, has shown that RA can elicit a regenerative response, growth cone turning, independently of "classical" transcriptional activation While this work illustrates a novel regeneration-inducing effect in culture, it is currently -unknown whether RA also induces regeneration in situ. This study has sought to determine RA's regenerative effucts at the morphological and molecular levels by utilizing an in situ approach focusing on a single identified dopaminergic neuron which possesses a known "mapped" morphology within the CNS. These studies show, for the first time in an invertebrate, that RA can increase neurite outgrowth of dopaminergic cells that have undergone a nerve-crush injury. Utilizing Western blot analysis, it was shown that this effect appears to be independent of any changes in whole CNS expression levels of either the RAR or RXR. Additionally, utilizing immunohistochemistry, to examine protein localization, there does not appear to be any obvious changes in the RXR expression level at the crush site. Changes in cell morphology such as neurity extension are known to be modulated by changes in neuronal firing activity. It has been previously shown that exposure to RA over many days can lead to changes in the electrophysiological properties of cultured Lymnaea neurons; however, no studies have investigated whether short-term exposure to RA can elicit electrophysiological changes and/or changes in firing pattern of neurons in Lymnaea or any other species. The studies performed here show, for the first time in any species, that short-tenn treatment with RA can elicit significant changes in the firing properties of both identified dopaminergic neurons and peptidergic neurons. This effect appears to be independent of protein synthesis, activation of protein kinase A or phospholipase C, and calcium influx but is both dose-dependent and isomer-dependent. These studies provide evidence that the RXR, but not RAR, may be involved, and that intracellular calcium concentrations decrease upon RAexposure with a time course, dose-dependency and isomer-dependency that coincide with the RA-induced electrophysiological changes. Taken together, these studies provide important evidence highlighting RA as a multifunctional molecule, inducing morphological, molecular and electrophysiological changes within the CNS, and highlight the many pathways through which RA may operate to elicit its effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research has shown that University students with a history of self-reported mild head injury (MHI) are more willing to endorse moral transgressions associated with personal, relative to impersonal, dilemmas (Chiappetta & Good, 2008). However, the terms 'personal' and 'impersonal' in these dilemmas have functionally confounded the 'intentionality' of the transgression with the 'personal impact' or 'outcome' of the transgression. In this study we used a modified version of these moral dilemmas to investigate decision-making and sympathetic nervous system responsivity. Forty-eight University students (24 with MHI, 24 with no-MHI) read 24 scenarios depicting moral dilemmas varying as a function of 'intentionality' of the act (deliberate or unintentional) and its 'outcome' (physical harm, no physical harm, non-moral) and were required to rate their willingness to engage in the act. Physiological indices of arousal (e.g., heart rate - HR) were recorded throughout. Additionally, participants completed several neurocognitive tests. Results indicated significantly lowered HR activity at baseline, prior to, and during (but not after) making a decision for each type of dilemma for participants with MHI compared to their non-injured cohort. Further, they were more likely than their cohort to authorize personal injuries that were deliberately induced. MHI history was also associated with better performance on tasks of cognitive flexibility and attention; while students' complaints of postconcussive symptoms and their social problem solving abilities did not differ as a function of MHI history. The results provide subtle support for the hypothesis that both emotional and cognitive information guide moral decision making in ambiguous and emotionally distressing situations. Persons with even a MHI have diminished physiological arousal that may reflect disruption to the neural pathways of the VMPFC/OFC similar to those with more severe injuries.