6 resultados para VENTRAL HIPPOCAMPUS

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to chronic stress can alter the structure and function of brain regions involved in learning and memory, and these effects are typically long-lasting if the stress occurs during sensitive periods of development. Until recently, adolescence has received relatively little attention as a sensitive period of development, despite marked changes in behaviour, heightened reactivity to stressors, and cognitive and neural maturation. Therefore, the purpose of the present study was to investigate the long-term effects of chronic stress in adolescence on two spatial learning and memory tasks (Morris water maze and Spatial Object Location test) and on a working memory task (Delayed Alternation task). Male rats were randomly assigned to chronic social instability stress (SS; daily 1 hour isolation and subsequent change of cage partner between postnatal days 30 and 45) or to a no-stress control group (CTL). During acquisition learning in the Morris water maze task, SS rats demonstrated impaired long-term memory for the location of the hidden escape platform compared to CTL rats, although the impairment was only seen after the first day of training. Similarly, SS rats had impaired long-term memory in the Spatial Object Location test after a long delay (240 minutes), but not after shorter delays (15 or 60 minutes) compared to CTL rats. On the Delayed Alternation task, which assessed working memory across delays ranging from 5 to 90 seconds, no group differences were observed. These results are partially in line with previous research that revealed adult impairment on spatial learning and memory tasks after exposure to chronic social instability stress in adolescence. The observed deficits, however, appear to be limited to long-term memory as no group differences were observed during brief periods of retention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Once thought to occur only during specific periods of development, it is now clear that neurogenesis occurs in the rat hippocampus into adulthood. It is wellestablished that stress during adulthood decreases the rate of neurogenesis, but during adolescence, the effects of stress are much less understood. I investigated the effect of short-term or chronic stress during adolescence (daily lhr isolation and change of cage partner from postnatal day (PND) 30-32 or 30-45) on hippocampal neurogenesis. In experiment 1, rats were administered Bromodeoxyuridine (BrdU) daily on PND 30-32, or 46-48, to mark neurogenesis at the beginning of the stressor or after the stressor had ceased, respectively. Neither short-term nor chronic stress had an effect on proliferation or survival (evidenced by BrdU and Doublecortin (Dcx) immunohistochemistry respectively) of cells born at the beginning of the stress procedure. Compared to controls, BrdU-labeling showed chronic stress significantly increased proliferation of cells generated after the stressor had ceased, but survival of new neurons was not supported (Dcx-Iabeling). However, it may be that BrdU injections are inherently stressful. In experiment 2, the stressor (described above) was applied in the absence of BrdU injections. Ki67 (a marker of proliferation) showed that stress transiently increased cell proliferation. Dcx-Iabeling showed that stress also increased neuron survival into adulthood. Labeling with OX.,.42 (a marker of macro phages) suggested that the immune system plays a role in neurogenesis, as stress transiently decreased the number of activated microglia in the hippocampus. It can be concluded that in the adolescent male rat, chronic mild stress increases neurogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The medial prefrontal cortex (mPFC) is involved in performance-monitoring and has been implicated in the generation of several electrocortical responses associated with self-regulation. The error-related negativity (ERN), the inhibitory Nogo N2 (N2), and the feedback-related negativity (FRN) are event-related potential (ERP) components which reflect mPFC activity associated with feedback to behavioural (ERN, N2) and environmental (FRN) consequences. Our main goal was to determine whether or not rnPFC activation varies as a function of motivational context (e.g., those involving performance-related incentives) or the use of internally versus externally generated feedback signals (i.e., errors). Additionally, we assessed medial prefrontal activity in relation to individual differences in personality and temperament. Participants completed a combination of tasks in which performance-related incentives were associated with task performance and feedback generated from internal versus external responses. MPFC activity was indexed using both ERP scalp voltage peaks and intracerebral current source density (CSD) of dorsal and ventral regions. Additionally, participants completed several questionnaires assessing personality and temperament styles. Given previous studies have shown that enhanced mPFC activity to loss (or negative) feedback, we expected that activity in the mPFC would generally be greater during the Loss condition relative to the Win condition for both the ERN and N2. Also, due to the evidence that the (vmPFC) is engaged in arousing contexts, we hypothesized that activity in the ventromedial prefrontal cortex (vmPFC) would be greater than activity in the dorsomedial prefrontal cortex (dmPFC), especially in the Loss condition of the GoNogo task (ERN). Similarly, loss feedback in the BART (FRN) was expected to engage the vmPFC more than the dmPFC. Finally, we predicted that persons rating themselves as more willing to engage in approach-related behaviours or to exhibit rigid cognitive styles would show reduced activity of the mPFC. Overall, our results emphasize the role of affective evaluations of behavioural and environmental consequences when self-regulating. Although there were no effects of context on brain activity, our data indicate that, during the time of the ERN and N2 on the MW Go-Nogo task and the FRN on the BART, the vrnPFC was more active compared to the dmPFC. Moreover, regional recruitment in the mPFC was similar across internally (ERN) and externally (FRN) generated errors signals associated with loss feedback, as reflected by relatively greater activity in the vmPFC than the dmPFC. Our data also suggest that greater activity in the mPFC is associated with better inhibitory control, as reflected by both scalp and CSD measures. Additionally, deactivation of the subgenual anterior cingulate cortex (sgACC) and lower levels of self-reported positive affect were both related to increased voluntary risk-taking on the BART. Finally, persons reporting higher levels of approach-related behaviour or cognitive rigidity showed reduced activity of the mPFC. These results are in line with previous research emphasizing that affect/motivation is central to the processes reflected by mediofrontal negativities (MFNs), that the vmPFC is involved in regulating demands on motivational/affective systems, and that the underlying mechanisms driving these functions vary across both individuals and contexts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The palynology of Ocean Drilling Program Site 1007, leeward of the present Bahamas Bank, provides insights into upper Oligocene–lower Pleistocene dinoflagellate cyst associations in the tropical Americas. These associations are reviewed along with the sedimentary paleoenvironment to provide context for a morphological study of the cystdefined dinoflagellate Operculodinium bahamense and its comparison with the thecadefined dinoflagellate Protoceratium reticulatum which produces a cyst assignable to the cyst-defined genus Operculodinium. Detailed reconstructions of the tabulation in both species reveal strong similarities, having a sexiform hyposomal tabulation and L-type or modified L-type ventral organization. Protoceratium reticulatum has dextral torsion of the hypotheca, requiring assignation of the genus to the subfamily Cribroperidinioideae, whereas Operculodinium bahamense has neutral torsion requiring assignation to the subfamily Leptodinioideae. Results either imply polyphyletic origins for the genus Operculodinium or that combinations of ventral organization and torsion cannot always be applied rigidly to subdivide the family Gonyaulacaceae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a paucity of studies comparing social buffering in adolescents and adults, despite their marked differences in social behaviour. I investigated whether greater effects of social buffering on plasma corticosterone concentrations and expression of Zif268 in neural regions after an acute stressor would be found in adolescent compared with adult rats. Samples were obtained before and after one hour of isolation stress and after either one or three hours of recovery back in the colony with either a familiar or unfamiliar cage partner. Adolescent and adult rats did not differ in plasma concentrations of corticosterone at any time point. Corticosterone concentrations were higher after one hour isolation than at baseline (p < 0.001), and rats with a familiar partner during the recovery phase had lower corticosterone concentrations than did rats with an unfamiliar partner (p = 0.02). Zif268 immunoreactive cell counts were higher in the arcuate nucleus in both age groups after isolation (p = 0.007) and higher in the paraventricular nucleus of adolescents compared with adults during the recovery phase irrespective of partner familiarity. There was a significant decrease in immunoreactive cell counts after one hour isolation compared to baseline in the basolateral amygdala, central nucleus of the amygdala, and in the pyramidal layer of the hippocampus (all p < 0.05). An effect of partner familiarity on Zif268 immunoreactive cell counts was found in the granule layer of the dentate gyrus irrespective of age (higher in those with a familiar partner, p = 0.03) and in the medial prefrontal cortex in adolescents (higher with an unfamiliar partner, p = 0.02). Overall, the acute stress and partner familiarity produced a similar pattern of results in adolescents and adults, with both age groups sensitive to the social context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is extensive evidence that the mesolimbic dopamine system underlies the production of 50 kHz ultrasonic vocalizations in rats. In particular, the shell of the nucleus accumbens is associated with generation of frequency modulated 50 kHz calls (a specific type of 50 kHz call which can be subdivided into various subtypes). There is also evidence that amphetamine administered systemically preferentially increases the proportion of trill and step calls compared to other frequency modulated 50 kHz subtypes. The purpose of this study was to investigate the effect of drug administration route and the role of the nucleus accumbens shell in amphetamine-induced 50 kHz call profile in the rat. Three experiments investigated this by using subcutaneous and intra-accumbens microinjections of amphetamine, as well as procaine (a local anesthetic) blockade of the nucleus accumbens. Ultrasonic vocalizations were recorded digitally from 24 rats and were analysed for sonographic structure based on general call parameters. The results of the three experiments were partially supportive of the hypotheses. Systemic amphetamine was found to induce greater bandwidth in 50 kHz calling compared to spontaneous calls in a vehicle condition. Systemic amphetamine was also found to preferentially increase the proportion of trill and step subtypes compared to vehicle. Moreover, there was no difference in the proportions of 50 kHz subtypes resulting from intracerebral or systemic application of amphetamine. There was, however, a significant difference for bandwidth, with systemic amphetamine inducing greater bandwidth over intraaccumbens application. Procaine blockade of the nucleus accumbens shell paired with subcutaneous amphetamine produced no difference in bandwidth of calls compared with those after a vehicle pre-treatment similarly paired. There was no reduction in the proportions of trill and step 50 kHz subtypes as well, with the procaine condition showing significantly greater proportion of step calls. The results of the study support a role for the iii nucleus accumbens shell in the amphetamine-induced changes on 50 kHz call profile. They also indicate there are more regions and pathways involved in generating 50 kHz calls than the projections from the ventral tegmental area to the nucleus accumbens. The implications of this work are that frequency modulated 50 kHz subtypes may be generated by distinct neurophysiological mechanisms and may represent a profitable avenue for investigating different circuits of 50 kHz call categories in the rat.