3 resultados para V-1a- and V-2-receptors

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyanobacterium Synechococcus sp. PCC 7942 (Anacystis nidulans R2) adjusts its photosynthetic function by changing one of the polypeptides of photosystem II. This polypeptide, called Dl, is found in two forms in Synechococcus sp. PCC 7942. Changing the growth light conditions by increasing the light intensity to higher levels results in replacement of the original form of D 1 polypeptide, D 1: 1, with another form, D 1 :2. We investigated the role of these two polypeptides in two mutant strains, R2S2C3 (only Dl:l present) and R2Kl (only Dl:2 present) In cells with either high or low PSI/PSII. R2S2C3 cells had a lower amplitude for 77 K fluorescence emission at 695 nm than R2Kl cells. Picosecond fluorescence decay kinetics showed that R2S2C3 cells had shorter lifetimes than R2Kl cells. The lower yields and shorter lifetimes observed in the D 1 and Dl:2 containing cells. containing cells suggest that the presence of D 1: 1 results in more photochemical or non-photochemical quenching of excitation energy In PSII. One of the most likely mechanisms for the increased quenching in R2S2C3 cells could be an increased efficiency in the transfer of excitation energy from PSII to PSI. However, photophysical studies including 77 K fluorescence measurements and picosecond time resolved decay kinetics comparing low and high PSI/PSII cells did not support the hypothesis that D 1: 1 facilitates the dissipation of excess energy by energy transfer from PSII to PSI. In addition physiological studies of oxygen evolution measurements after photoinhibition treatments showed that the two mutant cells had no difference in their susceptibility to photoinhibition with either high PSI/PSII ratio or low PSI/PSII ratio. Again suggesting that, the energy transfer efficiency from PSII to PSI is likely not a factor in the differences between Dl:l and Dl:2 containing cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical cross section of PS I in whole cells of Porphyridium cruentum (UTEX 161), held in either state 1 or state 2, was determined by measuring the change in absorbance at 820nm, an indication of P700+; the X-section of PS2 was determined by measuring the variable fluorescence, (Fv-Fo)/Fo, from PS2. Both cross-sections were 7 determined by fitting Poisson distribution equations to the light saturation curves obtained with single turnover laser flashes which varied in intensity from zero to a level where maximum yield occurred. Flash wavelengths of 574nm, 626nm, and 668nm were used, energy absorbed by PBS, by PBS and chla, and by chla respectively. There were two populations of both PSi and PS2. A fraction of PSi is associated with PBS, and a fraction of PS2 is free from PBS. On the transition S1->S2, only with PBS-absorbed energy (574nm) did the average X-section of PSi increase (27%), and that of PS2 decrease (40%). The fraction of PSi associated with PBS decreased, from 0.65 to 0.35, and the Xsection of this associated PS 1 increased, from 135±65 A2 to 400±300A2. The cross section of PS2 associated with PBS decreased from 150±50 A2 to 85±45 A2, but the fraction of PS2 associated with PBS, approximately 0.75, did not change significantly. The increase in PSi cross section could not be completely accounted for by postulating that several PSi are associated with a single PBS and that in the transition to state2, fewer PSi share the same number of PBS, resulting in a larger X-section. It is postulated that small changes occur in the attachment of PS2 to PBS causing energy to be diverted to the attached PSi. These experiments support neither the mobile-PBS model of state transitions nor that of spillover. From cross section changes there was no evidence of energy transfer from PS2 to PSi with 668nm light. The decrease in PS2 fluorescence which occurred at this wavelength cannot be explained by energy transfer; another explanation must be sought. No explanation was found for an observed decrease in PSi yield at high flash intensities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rates of H2 formation have been determined for the thermal decomposition of isopropyl peroxide at l30o-l50oC in toluene and methanol and at l400C in isopropyl alcohol and water. Product studies have been carried out at l400C in these solvents. The decomposition of isopropyl peroxide was shown to be unimolecular with energies of activation in toluene, and methanol of 39.1, 23.08 Kcal/mole respectively. It has been shown that the rates of H2 formation in decomposition of isopropyl peroxide are solvent dependent and that the ~ vs "'2';' values (parameters for solvent polarity) givesastraight line. Mechanisms for hydrogen production are discussed which satisfactorily explain the stabilization of the six-centered transition state by the solvent. One possibility is that of conformation stabilization by solvent and the other, a transition state with sufficient ionic character to be stabilized by a polar solvent. Rates of thermal decomposition of 1,2-dioxane in tert-butylbenzene at l40o-l70oC have been determined. The activation energy was found to be 33.4 Kcal/mole. This lower activation energy, compared to that for the decomposition of isopropyl peroxide in toluene (39.1 Kcal/mole) has been explained in terms of ring strain. Decomposition of 1,2 dioxane in MeOH does not follow a first order reaction. Several mechanisms have been suggested for the products observed for decomposition of 1;2-dioxane in toluene and methanol.