4 resultados para Ureteral Bud
em Brock University, Canada
Resumo:
Grape (Vitis spp.) is a culturally and economically important crop plant that has been cultivated for thousands of years, primarily for the production of wine. Grape berries accumulate a myriad of phenylpropanoid secondary metabolites, many of which are glucosylated in plantae More than 90 O-glucosyltransferases have been cloned and biochemically characterized from plants, only two of which have been isolated from Vitis spp. The world-wide economic importance of grapes as a crop plant, the human health benefits associated with increased consumption of grape-derived metabolites, the biological relevance of glucosylation, and the lack of information about Vitis glucosyltransferases has inspired the identification, cloning and biochemical characterization of five novel "family 1" O-glucosyltransferases from Concord grape (Vitis labrusca cv. Concord). Protein purification and associated protein sequencIng led to the molecular cloning of UDP-glucose: resveratrollhydroxycinnamic acid O-glucosyltransferase (VLRSGT) from Vitis labrusca berry mesocarp tissue. In addition to being the first glucosyltransferase which accepts trans-resveratrol as a substrate to be characterized in vitro, the recombinant VLRSGT preferentially produces the glucose esters of hydroxycinnamic acids at pH 6.0, and the glucosides of trans-resveratrol and flavonols at 'pH 9.0; the first demonstration of pH-dependent bifunctional glucosylation for this class of enzymes. Gene expression and metabolite profiling support a role for this enzyme in the bifuncitonal glucosylation ofstilbenes and hydroxycinnamic acids in plantae A homology-based approach to cloning was used to identify three enzymes from the Vitis vinifera TIGR grape gene index which had high levels of protein sequence iii identity to previously characterized UDP-glucose: anthocyanin 5-0-glucosyltransferases. Molecular cloning and biochemical characterization demonstrated that these enzymes (rVLOGTl, rVLOGT2, rVLOGT3) glucosylate the 7-0-position of flavonols and the xenobiotic 2,4,5-trichlorophenol (TCP), but not anthocyanins. Variable gene expression throughout grape berry development and enzyme assays with native grape berry protein are consistent with a role for these enzymes in the glucosylation of flavonols; while the broad substrate specificity, the ability of these enzymes to glucosylate TCP and expression of these genes in tissues which are subject to pathogen attack (berry, flower, bud) is consistent with a role for these genes in the plant defense response. Additionally, the Vitis labrusca UDP-glucose: flavonoid 3-0-glucosyltransferase (VL3GT) was identified, cloned and characterized. VL3GT has 96 % protein sequence identity to the previously characterized Vitis vinifera flavonoid 3-0-glucosyltransferase (VV3GT); and glucosylates the 3-0-position of anthocyanidins and flavonols in vitro. Despite high levels of protein sequence identity, VL3GT has distinct biochemical characteristics (as compared to VV3GT), including a preference for B-ring methylated flavonoids and the inability to use UDP-galactose as a donor substrate. RT-PCR analysis of VL3GT gene expression and enzyme assays with native grape protein is consistent with an in planta role for this enzyme in the glucosylation of anthocyanidins,but not flavonols. These studies reveal the power of combining several biochemistry- and molecular biology-based tools to identify, clone, biochemically characterize and elucidate the in planta function of several biologically relevant O-glucosyltransferases from Vitis spp.
Resumo:
This thesis compares the responses of regenerating forelimb tissues of the newt Notophthalmu..f vlridescens to the stresses of hyperthermia and ID.echanical injury of amputation. In particular, both quantitative and qualitative changes in the synthesis of soluble proteins in stump tissues, including those of the heat shock protein family (HSP70-1ike) were examined. Results from SDS-PAGEfluorography indicate that the trauma of amputation mimics the heat shock response both quantitatively and temporally in its transient repression of the synthesis of most normal cellular proteins, and qualitatively. in the locaJized expression of two unique proteins (hsp30 and hsp70). Fluorography of proteins separated by twodimensional gets revealed that thelCl4:alizedt amputation induced 70kDa protein (amp70) was distinct from the more basic newt hsp/hsc70 isoforms. Although limb amputation resulted in an increase in the synthesis of HSP70 mRNA analogous to that induced by heat 3.b.OCKf amp70 did not cross-react with murine monoclonal antibodies directed against both the inducible and cognate HSP70 proteins of the human. Thus, the possible relationship of amp70 to other members of the HSP70-1ike protein family remains unclear. Western analyses indicated that the levels of the constitutive form of HSP70 (hsc70) were found to be regulated in a stage-dependent manner in the distal stump tissues of the regen,erating forelimb of the newt. The highest levels were found in the mid-late bud stage, a period during which rapidly dividing blastema cells begin to redifferentiate in a proximodistal direction. Immediately after amputation) hsc70 synthesis and accumulation was depressed below steady-state levels measured in the unamputated limb~ The results are discussed in light of a possible role for HSPs and amputatio~ induced proteins in the epimorphic regeneration of the amphibian limb.
Resumo:
Martin “Bud” Walsh served in the Canadian Merchant Navy during the Second World War as a fireman stoking boilers. He continued to serve in the Navy after the war, until December 1948. In 1949, he joined the Crowland Police Department as a constable. He subsequently worked as a constable with the Welland Police Department and was promoted several times, eventually to deputy chief in 1969. In 1971, he became superintendent of the St. Catharines detachment of the regional force. He has been the recipient of several prestigious awards honouring his contributions to his country, including the Queen Elizabeth II Silver Jubilee Medal (1977) and the Queen Elizabeth II Diamond Jubilee Medal (2012).
Resumo:
Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by a myriad of factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site. It was hypothesized that winter hardiness would be influenced by certain terroir factors , specifically that vines with low water status [more negative leaf water potential (leaf ψ)] would be more winter hardy than vines with high water status (more positive leaf ψ). Twelve different vineyard blocks (six each of Riesling and Cabernet franc) throughout the Niagara Region in Ontario, Canada were chosen. Data were collected during the growing season (soil moisture, leaf ψ), at harvest (yield components, berry composition), and during the winter (bud LT50, bud survival). Interpolation and mapping of the variables was completed using ArcGIS 10.1 (ESRI, Redlands, CA) and statistical analyses (Pearson’s correlation, principal component analysis, multilinear regression) were performed using XLSTAT. Clear spatial trends were observed in each vineyard for soil moisture, leaf ψ, yield components, berry composition, and LT50. Both leaf ψ and berry weight could predict the LT50 value, with strong positive correlations being observed between LT50 and leaf ψ values in eight of the 12 vineyard blocks. In addition, vineyards in different appellations showed many similarities (Niagara Lakeshore, Lincoln Lakeshore, Four Mile Creek, Beamsville Bench). These results suggest that there is a spatial component to winter injury, as with other aspects of terroir, in the Niagara region.